2 Module : Gargantext.Core.Methods.Matrix.Accelerate.Utils
4 Copyright : (c) CNRS, 2017-Present
5 License : AGPL + CECILL v3
6 Maintainer : team@gargantext.org
7 Stability : experimental
10 This module aims at implementig distances of terms context by context is
11 the same referential of corpus.
13 Implementation use Accelerate library which enables GPU and CPU computation:
15 * Manuel M. T. Chakravarty, Gabriele Keller, Sean Lee, Trevor L. McDonell, and Vinod Grover.
16 [Accelerating Haskell Array Codes with Multicore GPUs][CKLM+11].
17 In _DAMP '11: Declarative Aspects of Multicore Programming_, ACM, 2011.
19 * Trevor L. McDonell, Manuel M. T. Chakravarty, Vinod Grover, and Ryan R. Newton.
20 [Type-safe Runtime Code Generation: Accelerate to LLVM][MCGN15].
21 In _Haskell '15: The 8th ACM SIGPLAN Symposium on Haskell_, ACM, 2015.
25 {-# LANGUAGE TypeFamilies #-}
26 {-# LANGUAGE TypeOperators #-}
27 {-# LANGUAGE ScopedTypeVariables #-}
28 {-# LANGUAGE ViewPatterns #-}
30 module Gargantext.Core.Methods.Matrix.Accelerate.Utils
33 import qualified Data.Foldable as P (foldl1)
34 import Debug.Trace (trace)
35 import Data.Array.Accelerate
36 import Data.Array.Accelerate.Interpreter (run)
37 import qualified Gargantext.Prelude as P
39 -- | Matrix cell by cell multiplication
45 => Acc (Array ((ix :. Int) :. Int) a)
46 -> Acc (Array ((ix :. Int) :. Int) a)
47 -> Acc (Array ((ix :. Int) :. Int) a)
55 , P.Fractional (Exp a)
57 => Acc (Array ((ix :. Int) :. Int) a)
58 -> Acc (Array ((ix :. Int) :. Int) a)
59 -> Acc (Array ((ix :. Int) :. Int) a)
62 -- | Term by term division where divisions by 0 produce 0 rather than NaN.
63 termDivNan :: ( Shape ix
68 , P.Fractional (Exp a)
70 => Acc (Array ((ix :. Int) :. Int) a)
71 -> Acc (Array ((ix :. Int) :. Int) a)
72 -> Acc (Array ((ix :. Int) :. Int) a)
73 termDivNan = zipWith (\i j -> cond ((==) j 0) 0 ((/) i j))
79 , P.Fractional (Exp a)
81 => Acc (Array ((ix :. Int) :. Int) a)
82 -> Acc (Array ((ix :. Int) :. Int) a)
83 -> Acc (Array ((ix :. Int) :. Int) a)
90 , P.Fractional (Exp a)
92 => Acc (Array ((ix :. Int) :. Int) a)
93 -> Acc (Array ((ix :. Int) :. Int) a)
94 -> Acc (Array ((ix :. Int) :. Int) a)
97 -----------------------------------------------------------------------
98 matrixOne :: Num a => Dim -> Acc (Matrix a)
101 ones = fill (index2 n n) 1
105 matrixIdentity :: Num a => Dim -> Acc (Matrix a)
107 let zeros = fill (index2 n n) 0
108 ones = fill (index1 n) 1
111 permute const zeros (\(unindex1 -> i) -> index2 i i) ones
114 matrixEye :: Num a => Dim -> Acc (Matrix a)
116 let ones = fill (index2 n n) 1
117 zeros = fill (index1 n) 0
120 permute const ones (\(unindex1 -> i) -> index2 i i) zeros
123 diagNull :: Num a => Dim -> Acc (Matrix a) -> Acc (Matrix a)
124 diagNull n m = zipWith (*) m (matrixEye n)
127 -- Returns an N-dimensional array with the values of x for the indices where
128 -- the condition is true, 0 everywhere else.
130 :: forall sh a. (Shape sh, Elt a)
131 => (Exp sh -> Exp Bool) -> Exp a -> Acc (Array sh a) -> Acc (Array sh a)
132 condOrDefault theCond def x = permute const zeros filterInd x
134 zeros = fill (shape x) (def)
135 filterInd ix = (cond (theCond ix)) ix ignore
137 -----------------------------------------------------------------------
138 _runExp :: Elt e => Exp e -> e
139 _runExp e = indexArray (run (unit e)) Z
141 -----------------------------------------------------------------------
145 -- Vector (Z :. 3) [0,1,2]
146 vector :: Elt c => Int -> [c] -> (Array (Z :. Int) c)
147 vector n l = fromList (Z :. n) l
151 -- >>> matrix 3 ([1..] :: [Double])
152 -- Matrix (Z :. 3 :. 3)
156 matrix :: Elt c => Int -> [c] -> Matrix c
157 matrix n l = fromList (Z :. n :. n) l
159 -- | Two ways to get the rank (as documentation)
161 -- >>> rank (matrix 3 ([1..] :: [Int]))
163 rank :: (Matrix a) -> Int
164 rank m = arrayRank $ arrayShape m
166 -----------------------------------------------------------------------
167 -- | Dimension of a square Matrix
168 -- How to force use with SquareMatrix ?
171 -- | Get Dimension of a square Matrix
173 -- >>> dim (matrix 3 ([1..] :: [Int]))
175 dim :: Matrix a -> Dim
178 Z :. _ :. n = arrayShape m
179 -- indexTail (arrayShape m)
181 -----------------------------------------------------------------------
183 -- | Sum of a Matrix by Column
185 -- >>> run $ matSumCol 3 (use $ matrix 3 [1..])
186 -- Matrix (Z :. 3 :. 3)
187 -- [ 12.0, 15.0, 18.0,
190 matSumCol :: (Elt a, P.Num (Exp a)) => Dim -> Acc (Matrix a) -> Acc (Matrix a)
191 matSumCol r mat = replicate (constant (Z :. (r :: Int) :. All)) $ sum $ transpose mat
193 matSumCol' :: (Elt a, P.Num (Exp a)) => Matrix a -> Matrix a
194 matSumCol' m = run $ matSumCol n m'
200 -- | Proba computes de probability matrix: all cells divided by thee sum of its column
201 -- if you need get the probability on the lines, just transpose it
203 -- >>> run $ matProba 3 (use $ matrix 3 [1..])
204 -- Matrix (Z :. 3 :. 3)
205 -- [ 8.333333333333333e-2, 0.13333333333333333, 0.16666666666666666,
206 -- 0.3333333333333333, 0.3333333333333333, 0.3333333333333333,
207 -- 0.5833333333333334, 0.5333333333333333, 0.5]
208 matProba :: Dim -> Acc (Matrix Double) -> Acc (Matrix Double)
209 matProba d mat = zipWith (/) mat (matSumCol d mat)
211 -- | Diagonal of the matrix
213 -- >>> run $ diag (use $ matrix 3 ([1..] :: [Int]))
214 -- Vector (Z :. 3) [1,5,9]
218 diag m = backpermute (indexTail (shape m))
219 (lift1 (\(Z :. x) -> (Z :. x :. (x :: Exp Int))))
222 -- | Divide by the Diagonal of the matrix
224 -- >>> run $ divByDiag 3 (use $ matrix 3 ([1..] :: [Double]))
225 -- Matrix (Z :. 3 :. 3)
226 -- [ 1.0, 0.4, 0.3333333333333333,
227 -- 4.0, 1.0, 0.6666666666666666,
229 divByDiag :: Dim -> Acc (Matrix Double) -> Acc (Matrix Double)
230 divByDiag d mat = zipWith (/) mat (replicate (constant (Z :. (d :: Int) :. All)) $ diag mat)
232 -----------------------------------------------------------------------
233 -- | Filters the matrix with the minimum of maximums
235 -- >>> run $ matMiniMax $ use $ matrix 3 [1..]
236 -- Matrix (Z :. 3 :. 3)
240 matMiniMax :: (Elt a, Ord a, P.Num a)
243 matMiniMax m = filterWith' miniMax' (constant 0) m
245 miniMax' = the $ maximum $ minimum m
248 -- | Filters the matrix with a constant
250 -- >>> run $ matFilter 5 $ use $ matrix 3 [1..]
251 -- Matrix (Z :. 3 :. 3)
255 filter' :: Double -> Acc (Matrix Double) -> Acc (Matrix Double)
256 filter' t m = filterWith t 0 m
258 filterWith :: Double -> Double -> Acc (Matrix Double) -> Acc (Matrix Double)
259 filterWith t v m = map (\x -> ifThenElse (x > (constant t)) x (constant v)) (transpose m)
261 filterWith' :: (Elt a, Ord a) => Exp a -> Exp a -> Acc (Matrix a) -> Acc (Matrix a)
262 filterWith' t v m = map (\x -> ifThenElse (x > t) x v) m
265 ------------------------------------------------------------------------
266 ------------------------------------------------------------------------
271 data Direction = MatCol (Exp Int) | MatRow (Exp Int) | Diag
273 nullOf :: Num a => Dim -> Direction -> Acc (Matrix a)
275 let ones = fill (index2 n n) 1
276 zeros = fill (index2 n n) 0
279 permute const ones ( lift1 ( \(Z :. (i :: Exp Int) :. (_j:: Exp Int))
281 MatCol m -> (Z :. i :. m)
282 MatRow m -> (Z :. m :. i)
283 Diag -> (Z :. i :. i)
288 nullOfWithDiag :: Num a => Dim -> Direction -> Acc (Matrix a)
289 nullOfWithDiag n dir = zipWith (*) (nullOf n dir) (nullOf n Diag)
292 divide :: (Elt a, Ord a, P.Fractional (Exp a), P.Num a)
293 => Acc (Matrix a) -> Acc (Matrix a) -> Acc (Matrix a)
294 divide = zipWith divide'
296 divide' a b = ifThenElse (b > (constant 0))
301 sumRowMin :: (Num a, Ord a) => Dim -> Acc (Matrix a) -> Acc (Matrix a)
302 sumRowMin n m = {-trace (P.show $ run m') $-} m'
304 m' = reshape (shape m) vs
306 $ P.map (\z -> sumRowMin1 n (constant z) m) [0..n-1]
308 sumRowMin1 :: (Num a, Ord a) => Dim -> Exp Int -> Acc (Matrix a) -> Acc (Vector a)
309 sumRowMin1 n x m = trace (P.show (run m,run $ transpose m)) $ m''
311 m'' = sum $ zipWith min (transpose m) m
312 _m' = zipWith (*) (zipWith (*) (nullOf n (MatCol x)) $ nullOfWithDiag n (MatRow x)) m
315 sumColMin :: (Num a, Ord a) => Dim -> Acc (Matrix a) -> Acc (Matrix a)
316 sumColMin n m = reshape (shape m) vs
319 $ P.map (\z -> sumColMin1 n (constant z) m) [0..n-1]
322 sumColMin1 :: (Num a) => Dim -> Exp Int -> Acc (Matrix a) -> Acc (Matrix a)
323 sumColMin1 n x m = zipWith (*) (nullOfWithDiag n (MatCol x)) m
327 {- | WIP fun with indexes
328 selfMatrix :: Num a => Dim -> Acc (Matrix a)
330 let zeros = fill (index2 n n) 0
331 ones = fill (index2 n n) 1
334 permute const ones ( lift1 ( \(Z :. (i :: Exp Int) :. (_j:: Exp Int))
335 -> -- ifThenElse (i /= j)
340 selfMatrix' :: (Elt a, P.Num (Exp a)) => Array DIM2 a -> Matrix a
341 selfMatrix' m' = run $ selfMatrix n
346 -------------------------------------------------
347 -------------------------------------------------
348 crossProduct :: Dim -> Acc (Matrix Double) -> Acc (Matrix Double)
349 crossProduct n m = {-trace (P.show (run m',run m'')) $-} zipWith (*) m' m''
352 m'' = transpose $ cross n m
355 crossT :: Matrix Double -> Matrix Double
356 crossT = run . transpose . use
358 crossProduct' :: Matrix Double -> Matrix Double
359 crossProduct' m = run $ crossProduct n m'
364 runWith :: (Arrays c, Elt a1)
365 => (Dim -> Acc (Matrix a1) -> a2 -> Acc c)
369 runWith f m = run . f (dim m) (use m)
372 cross :: Dim -> Acc (Matrix Double) -> Acc (Matrix Double)
373 cross n mat = diagNull n (matSumCol n $ diagNull n mat)
375 cross' :: Matrix Double -> Matrix Double
376 cross' mat = run $ cross n mat'
383 -- | Hypothesis to test maybe later (or not)
384 -- TODO ask accelerate for instances to ease such writtings:
385 p_ :: (Elt e, P.Fractional (Exp e)) => Acc (Array DIM2 e) -> Acc (Array DIM2 e)
386 p_ m = zipWith (/) m (n_ m)
388 n_ :: Elt e => Acc (SymetricMatrix e) -> Acc (Matrix e)
389 n_ m = backpermute (shape m)
390 (lift1 ( \(Z :. (i :: Exp Int) :. (j:: Exp Int))
391 -> (ifThenElse (i < j) (lift (Z :. j :. j)) (lift (Z :. i :. i)) :: Exp DIM2)
396 theMatrixDouble :: Int -> Matrix Double
397 theMatrixDouble n = run $ map fromIntegral (use $ theMatrixInt n)
399 theMatrixInt :: Int -> Matrix Int
400 theMatrixInt n = matrix n (dataMatrix n)
402 dataMatrix :: Int -> [Int]
403 dataMatrix x | (P.==) x 2 = [ 1, 1
407 | (P.==) x 3 = [ 7, 4, 0
411 | (P.==) x 4 = [ 4, 1, 2, 1
418 | P.otherwise = P.undefined
421 theResult :: Int -> Matrix Double
422 theResult n | (P.==) n 2 = let r = 1.6094379124341003 in [ 0, r, r, 0]
423 | P.otherwise = [ 1, 1 ]
428 => Int -> [e] -> Acc (Array ((Z :. Int) :. Int) e)
429 colMatrix n ns = replicate (constant (Z :. (n :: Int) :. All)) v
431 v = use $ vector (P.length ns) ns
433 -----------------------------------------------------------------------