]> Git — Sourcephile - gargantext.git/blob - src/Gargantext/Text/Terms/Eleve.hs
[REFACT] HyperData
[gargantext.git] / src / Gargantext / Text / Terms / Eleve.hs
1 {-|
2 Module : Gargantext.Text.Terms.Eleve
3 Description : Unsupervized Word segmentation
4 Copyright : (c) CNRS, 2019-Present
5 License : AGPL + CECILL v3
6 Maintainer : team@gargantext.org
7 Stability : experimental
8 Portability : POSIX
9
10 # Implementation of Unsupervized Word Segmentation
11
12 References:
13
14 - Python implementation (Korantin August, Emmanuel Navarro):
15 [EleVe](https://github.com/kodexlab/eleve.git)
16
17 - Unsupervized Word Segmentation:the case for Mandarin Chinese Pierre
18 Magistry, Benoît Sagot, Alpage, INRIA & Univ. Paris 7, Proceedings of
19 the 50th Annual Meeting of the Association for Computational Linguistics
20 , pages 383–387. [PDF](https://www.aclweb.org/anthology/P12-2075)
21
22 Notes for current implementation:
23 - TODO extract longer ngrams (see paper above, viterbi algo can be used)
24 - TODO AD TEST: prop (Node c _e f) = c == Map.size f
25
26 - AD: Real ngrams extraction test
27 from Gargantext.Text.Terms import extractTermsUnsupervised
28 docs <- runCmdRepl $ selectDocs 1004
29 extractTermsUnsupervised 3 $ DT.intercalate " "
30 $ catMaybes
31 $ Gargantext.map _hyperdataDocument_abstract docs
32
33 -}
34 {-# LANGUAGE ConstraintKinds #-}
35 {-# LANGUAGE TemplateHaskell #-}
36 {-# LANGUAGE TypeFamilies #-}
37
38 module Gargantext.Text.Terms.Eleve where
39
40 -- import Debug.Trace (trace)
41 -- import Debug.SimpleReflect
42
43 import Control.Lens hiding (levels, children)
44 import Control.Monad (forM_)
45 import Data.Ord (Ord)
46 import qualified Data.List as L
47 import Data.Monoid
48 import Data.Text (Text)
49 import qualified Data.Text as T
50 import Data.Map (Map)
51 import Data.Maybe (fromMaybe)
52 import qualified Data.Map as Map
53 import Gargantext.Prelude hiding (cs)
54 import qualified Data.Tree as Tree
55 import Data.Tree (Tree)
56 import qualified Prelude as P (putStrLn, logBase, isNaN, RealFloat)
57
58 nan :: Floating e => e
59 nan = 0 / 0
60
61 noNaNs :: P.RealFloat e => [e] -> [e]
62 noNaNs = filter (not . P.isNaN)
63
64 updateIfDefined :: P.RealFloat e => e -> e -> e
65 updateIfDefined e0 e | P.isNaN e = e0
66 | otherwise = e
67
68 sim :: Entropy e => e -> e -> Bool
69 sim x y = x == y || (P.isNaN x && P.isNaN y)
70
71 subst :: Entropy e => (e, e) -> e -> e
72 subst (src, dst) x | sim src x = dst
73 | otherwise = x
74 ------------------------------------------------------------------------
75
76 -- | TODO: Show Instance only used for debugging
77 type Entropy e =
78 ( Fractional e
79 , Floating e
80 , P.RealFloat e
81 , Show e
82 )
83 ------------------------------------------------------------------------
84 -- | Example and tests for development
85 data I e = I
86 { _info_entropy :: e
87 , _info_entropy_var :: e
88 , _info_autonomy :: e
89 }
90
91 instance Show e => Show (I e) where
92 show (I e ev a) = show (e, ev, a)
93
94 makeLenses ''I
95
96 type ModEntropy i o e = (e -> e) -> i -> o
97
98 set_autonomy :: Entropy e => ModEntropy (I e) (I e) e
99 set_autonomy fe i = i & info_autonomy .~ fe (i ^. info_entropy_var)
100
101 set_entropy_var :: Entropy e => Setter e (I e) e e
102 set_entropy_var f e = (\ev -> I e ev nan) <$> f e
103
104 data StartStop = Start | Stop
105 deriving (Ord, Eq, Show)
106
107 data Token = NonTerminal Text
108 | Terminal StartStop
109 deriving (Ord, Eq, Show)
110
111 isTerminal :: Token -> Bool
112 isTerminal (Terminal _) = True
113 isTerminal (NonTerminal _) = False
114
115 nonTerminals :: [Token] -> [Text]
116 nonTerminals ts = [nt | NonTerminal nt <- ts]
117
118 parseToken :: Text -> Token
119 parseToken "<start>" = Terminal Start
120 parseToken "<stop>" = Terminal Stop
121 parseToken t = NonTerminal t
122
123 toToken :: [Text] -> [Token]
124 toToken xs = Terminal Start : (NonTerminal <$> xs) <> [Terminal Stop]
125
126 printToken :: Token -> Text
127 printToken = f
128 where
129 f (NonTerminal x) = x
130 f (Terminal Start) = "<start>"
131 f (Terminal Stop) = "<stop>"
132 ------------------------------------------------------------------------
133
134 data Trie k e
135 = Node { _node_count :: Int
136 , _node_entropy :: e
137 , _node_children :: Map k (Trie k e)
138 }
139 | Leaf { _node_count :: Int }
140 deriving (Show)
141
142 makeLenses ''Trie
143
144 insertTrie :: Ord k => [k] -> Trie k () -> Trie k ()
145 insertTrie [] n = n { _node_count = _node_count n +1}
146 insertTrie (x:xs) (Leaf c) = mkTrie (c+1) $ Map.singleton x $ insertTrie xs emptyTrie
147 insertTrie (x:xs) (Node c _e children) = mkTrie (c+1) $ Map.alter f x children
148 where
149 f = Just . insertTrie xs . fromMaybe emptyTrie
150
151 -- emptyTrie :: (Ord k, Monoid e) => Trie k e
152 -- emptyTrie = Node 0 mempty mempty
153 emptyTrie :: Trie k e
154 emptyTrie = Leaf 0
155
156 mkTrie :: Monoid e => Int -> Map k (Trie k e) -> Trie k e
157 mkTrie c children
158 | Map.null children = Leaf c
159 | otherwise = Node c mempty children
160
161 -----------------------------
162 -- | Trie to Tree since Tree as nice print function
163 toTree :: k -> Trie k e -> Tree (k,Int,Maybe e)
164 toTree k (Leaf c) = Tree.Node (k, c, Nothing) []
165 toTree k (Node c e cs) = Tree.Node (k, c, Just e) (map (uncurry toTree) $ Map.toList cs)
166
167 ------------------------------------------------------------------------
168 ------------------------------------------------------------------------
169 normalizeLevel :: Entropy e => e -> e -> e -> e
170 normalizeLevel m v e = (e - m) / v
171
172 {- Unused
173
174 nodeChildren :: Trie k e -> Map k (Trie k e)
175 nodeChildren (Node _ _ cs) = cs
176 nodeChildren (Leaf _) = Map.empty
177
178 -}
179
180 chunkAlongEleve :: Int -> [a] -> [[a]]
181 chunkAlongEleve n xs = L.take n <$> L.tails xs
182
183 data Direction = Backward | Forward
184
185 buildTrie :: Direction -> Int -> [[Token]] -> Trie Token ()
186 buildTrie d n sentences
187 = L.foldr insertTrie emptyTrie
188 . L.concat
189 $ ( filter (/= [Terminal (term d)])
190 . chunkAlongEleve (n + 1)
191 . order d
192 )
193 <$> sentences
194 where
195 order Forward = identity
196 order Backward = reverse
197 term Forward = Stop
198 term Backward = Start
199
200 class IsTrie trie where
201 entropyTrie :: Entropy e => (k -> Bool) -> trie k () -> trie k e
202 nodeEntropy :: Entropy e => Getting e i e -> trie k i -> e
203 nodeChild :: Ord k => k -> trie k e -> trie k e
204 findTrie :: Ord k => [k] -> trie k e -> trie k e
205 printTrie :: (Show i, Entropy e) => Getting e i e -> trie Token i -> IO ()
206 evTrie :: Entropy e => Getting e i e -> Setter i o e e -> trie k i -> trie k o
207 normalizeEntropy :: Entropy e
208 => Getting e i e -> ModEntropy i o e
209 -> trie k i -> trie k o
210
211 instance IsTrie Trie where
212
213 entropyTrie _ (Leaf c) = Leaf c
214 entropyTrie pred (Node c () children) = Node c e (map (entropyTrie pred) children)
215 where
216 children' = Map.toList children
217 sum_count = sum $ _node_count . snd <$> children'
218 e | sum_count == 0 = nan
219 | otherwise = sum $ f <$> children'
220 f (k, child) = if pred k then chc * P.logBase 2 (fromIntegral c)
221 else - chc * P.logBase 2 chc
222 where
223 chc = fromIntegral (_node_count child) / fromIntegral c
224
225 nodeEntropy inE (Node _ e _) = e ^. inE
226 nodeEntropy _ (Leaf _) = nan
227
228 nodeChild k (Node _ _ cs) = fromMaybe emptyTrie (Map.lookup k cs)
229 nodeChild _ (Leaf _) = emptyTrie
230
231 findTrie ks t = L.foldl (flip nodeChild) t ks
232
233 printTrie inE t = do
234 P.putStrLn . Tree.drawTree
235 . fmap show
236 $ toTree (NonTerminal "") t
237 P.putStrLn " Levels:"
238 forM_ (normalizationLevels inE t) $ \level ->
239 P.putStrLn $ " " <> show level
240
241 evTrie inE setEV = go nan
242 where
243 go _ (Leaf c) = Leaf c
244 go e0 (Node c i children) = Node c (i & setEV .~ ev e0 e1) $ go e1 <$> children
245 where e1 = i ^. inE
246
247 ev 0 0 = nan
248 ev i0 i1 = i1 - i0
249
250 normalizeEntropy inE modE t = go (modE identity) (normalizationLevels inE t) t
251 where
252 go _ _ (Leaf c) = Leaf c
253 go _ [] _ = panic "normalizeEntropy' empty levels"
254 go f ((m, v, _) : ess) (Node c i children)
255 = Node c (f i) $ go (modE $ normalizeLevel m v) ess <$> children
256 ------------------------------------------------------------------------
257
258 levels :: Trie k e -> [[Trie k e]]
259 levels = L.takeWhile (not . L.null) . L.iterate (L.concatMap subForest) . pure
260 where
261 subForest :: Trie k e -> [Trie k e]
262 subForest (Leaf _) = []
263 subForest (Node _ _ children) = Map.elems children
264
265 entropyLevels :: Entropy e => Getting e i e -> Trie k i -> [[e]]
266 entropyLevels inE = fmap (noNaNs . map (nodeEntropy inE)) . L.tail . levels
267
268 normalizationLevels :: Entropy e => Getting e i e -> Trie k i -> [(e, e, Int)]
269 normalizationLevels inE = fmap f . entropyLevels inE
270 where
271 f es = (mean es, deviation es, length es)
272
273 ------------------------------------------------------------------------
274
275 data Tries k e = Tries
276 { _fwd :: Trie k e
277 , _bwd :: Trie k e
278 }
279
280 makeLenses ''Tries
281
282 buildTries :: Int -> [[Token]] -> Tries Token ()
283 buildTries n sentences = Tries
284 { _fwd = buildTrie Forward n sentences
285 , _bwd = buildTrie Backward n sentences
286 }
287
288 instance IsTrie Tries where
289
290 nodeEntropy inE (Tries f b) = mean [nodeEntropy inE f, nodeEntropy inE b]
291
292 findTrie ks (Tries f b) = Tries (findTrie ks f) (findTrie (reverse ks) b)
293
294 nodeChild = onTries . nodeChild
295
296 entropyTrie = onTries . entropyTrie
297
298 evTrie inE setEV = onTries $ evTrie inE setEV
299
300 normalizeEntropy inE = onTries . normalizeEntropy inE
301
302 printTrie inE (Tries f b) = do
303 P.putStrLn "Forward:"
304 printTrie inE f
305 P.putStrLn ""
306 P.putStrLn "Backward:"
307 printTrie inE b
308
309 onTries :: (Trie k i -> Trie k o) -> Tries k i -> Tries k o
310 onTries h (Tries f b) = Tries (h f) (h b)
311
312 ------------------------------------------------------------------------
313 mayCons :: [a] -> [[a]] -> [[a]]
314 mayCons [] xss = xss
315 mayCons xs xss = xs : xss
316
317 {-
318 split :: (IsTrie trie, Entropy e) => Lens' i e -> trie Token i -> [Token] -> [[Token]]
319 split _ _ [] = []
320 split inE t (Terminal Start:xs) = split inE t xs
321 split inE t (x0:xs0) = go [x0] xs0
322 where
323 go pref [] = [pref]
324 go pref (Terminal Stop:_) = [pref]
325 go _ (Terminal Start:_) = panic "split impossible"
326 go pref (x:xs) =
327 -- trace (show (if acc then "ACC" else "CUT", (prefx, epxt), if acc then ">" else "<=", ((pref, ept), "+", ([x], ext)))) $
328 if acc
329 then go prefx xs
330 else mayCons pref $ go [x] xs
331 where
332 prefx = pref <> [x]
333 pt = findTrie pref t
334 pxt = findTrie prefx t
335 xt = findTrie [x] t
336 ept = ne pt
337 -- ^ entropy of the current prefix
338 ext = ne xt
339 -- ^ entropy of [x]
340 epxt = ne pxt
341 -- ^ entropy of the current prefix plus x
342 acc = P.isNaN ept || P.isNaN ext || not (P.isNaN epxt) -- && (epxt > mean [ept, ext])
343
344 -- aut(["in","this","paper"]) > aut(["in","this"]) + aut(["paper"])
345
346 ne = nodeEntropy inE
347 -}
348
349 split :: Entropy e => Int -> Lens' i e -> Tries Token i -> [Token] -> [[Text]]
350 split _ _ _ [] = []
351 split _ _ _ [t] = pure <$> nonTerminals [t]
352 split n inE t ts = nonTerminals pref `mayCons` split n inE t (drop (length pref) ts)
353 where
354 pref = maximumWith (\ks -> nodeEntropy inE $ findTrie ks t)
355 (L.tail . L.inits . take n $ ts)
356
357
358 {-
359 split :: Entropy e => Lens' i e -> Tries Token i -> [Token] -> [[Token]]
360 split inE t0 ts =
361 maximumWith (sum . map $ nodeAutonomy inE t0) (all the splits of ts)
362 -}
363
364 ------------------------------------------------------------------------
365
366 mainEleve :: Int -> [[Text]] -> [[[Text]]]
367 mainEleve n x = mainEleve' n x x
368
369 mainEleve' :: Int -> [[Text]] -> [[Text]] -> [[[Text]]]
370 mainEleve' n x y = mainEleveWith x' n y
371 where
372 x' = buildTries n (fmap toToken x)
373 -- (fmap toToken i) is computed twice, since mainEleveWith is computing it too
374
375 -- | This function should take the longest possible chain of:
376 -- mainEleve'' n x y = maxChainSizeOf [ mainEleve' n x y
377 -- , mainEleve' n x x
378 -- , mainEleve' n y y
379 -- ]
380 mainEleve'' :: Int -> [[Text]] -> [[Text]] -> [[[Text]]]
381 mainEleve'' = undefined
382
383 mainEleveWith :: Tries Token () -> Int -> [[Text]] -> [[[Text]]]
384 mainEleveWith m n i = fmap (split n info_autonomy t) (fmap toToken i)
385 where
386 t :: Tries Token (I Double)
387 t = normalizeEntropy info_entropy_var set_autonomy
388 $ evTrie identity set_entropy_var
389 $ entropyTrie isTerminal m
390
391 ------------------------------------------------------------------------
392
393 type Checks e = [(Text, Int, e, e, e, e, e, e, e, e, e)]
394
395 testEleve :: e ~ Double => Bool -> Int -> [Text] -> Checks e -> IO Bool
396 testEleve debug n output checks = do
397 let
398 res = split (1 + n) info_autonomy nt <$> input
399 when debug $ do
400 P.putStrLn . show $ (printToken <$>) <$> input
401 P.putStrLn ""
402 printTrie info_entropy nt
403 P.putStrLn ""
404 P.putStrLn "Splitting:"
405 P.putStrLn $ show res
406 forM_ checks checker
407 pure $ expected == res
408
409 where
410 out = T.words <$> output
411 expected = fmap (T.splitOn "-") <$> out
412 input = toToken . (T.splitOn "-" =<<) <$> out
413
414 nt :: Tries Token (I Double)
415 nt = normalizeEntropy info_entropy_var set_autonomy
416 . evTrie identity set_entropy_var
417 . entropyTrie isTerminal
418 $ buildTries n input
419
420 check f msg ref my =
421 if f ref my
422 then P.putStrLn $ " \ESC[32mPASS\ESC[m " <> msg <> " " <> show ref
423 else P.putStrLn $ " \ESC[31mFAIL\ESC[m " <> msg <> " ref=" <> show ref <> " my=" <> show my
424
425 checker (ngram, count, entropy, ev, autonomy, fwd_entropy, fwd_ev, fwd_autonomy, bwd_entropy, bwd_ev, bwd_autonomy) = do
426 let ns = parseToken <$> T.words ngram
427 nt' = findTrie ns nt
428
429 P.putStrLn $ " " <> T.unpack ngram <> ":"
430 check (==) "count" count (_node_count (_fwd nt'))
431
432 check sim "entropy" entropy (nodeEntropy info_entropy nt' )
433 check sim "ev" ev (nodeEntropy info_entropy_var nt' )
434 check sim "autonomy" autonomy (nodeEntropy info_autonomy nt' )
435
436 check sim "fwd_entropy" fwd_entropy (nodeEntropy info_entropy (_fwd nt'))
437 check sim "fwd_ev" fwd_ev (nodeEntropy info_entropy_var (_fwd nt'))
438 check sim "fwd_autonomy" fwd_autonomy (nodeEntropy info_autonomy (_fwd nt'))
439
440 check sim "bwd_entropy" bwd_entropy (nodeEntropy info_entropy (_bwd nt'))
441 check sim "bwd_ev" bwd_ev (nodeEntropy info_entropy_var (_bwd nt'))
442 check sim "bwd_autonomy" bwd_autonomy (nodeEntropy info_autonomy (_bwd nt'))
443
444 -- | TODO real data is a list of tokenized sentences
445 example0, example1, example2, example3, example4, example5, example6, example7, example8, example9 :: [Text]
446 example0 = ["New-York is New-York and New-York"]
447 example1 = ["to-be or not to-be"]
448 example2 = ["to-be-or not to-be-or NOT to-be and"]
449 example3 = example0 <> example0
450 -- > TEST: Should not have York New in the trie
451 example4 = ["a-b-c-d e a-b-c-d f"]
452 example5 = ["a-b-c-d-e f a-b-c-d-e g a-b-c-d-e"]
453 example6 = ["le-petit chat"
454 ,"le-petit chien"
455 ,"le-petit rat"
456 ,"le gros rat"
457 ]
458 example7 = ["a-b d", "a-c e", "a-c", "a-b", "a-b", "a-c", "a-c", "a-b"]
459 -- example8 = ["z f", "z", "z", "z"] <> example7
460 example8 = ["z", "z", "z", "z"] <> example7 <> example7 <> example7
461 example9 = (T.replace "z" "a") <$> example8
462 --example8 = ["a-b d", "a-c e", "a f", "a-c g", "a-b h", "a i", "a j", "a-b k", "a-c l", "a-c m", "a n", "a-b o"]
463
464 checks0, checks2, checks7, checks8, checks9 :: Checks Double
465
466 checks0 =
467 -- [(token, count, entropy, ev, autonomy, fwd_entropy, fwd_ev, fwd_autonomy, bwd_entropy, bwd_ev, bwd_autonomy)]
468 [ ("<start>", 1, nan, nan, nan, 0.0, -2.113283334294875, -0.5000000000000002, nan, nan, nan)
469 , ("New", 3, 0.792481250360578, -1.3208020839342969, 0.7499999999999999, 0.0, -2.113283334294875, -0.5000000000000002, 1.584962500721156, -0.5283208335737188, 2.0)
470 , ("York", 3, 0.792481250360578, -1.3208020839342969, 0.7499999999999999, 1.584962500721156, -0.5283208335737188, 2.0, 0.0, -2.113283334294875, -0.5000000000000002)
471 , ("is", 1, 0, -2.113283334294875, -0.5000000000000002, 0.0, -2.113283334294875, -0.5000000000000002, 0.0, -2.113283334294875, -0.5000000000000002)
472 , ("and", 1, 0, -2.113283334294875, -0.5000000000000002, 0.0, -2.113283334294875, -0.5000000000000002, 0.0, -2.113283334294875, -0.5000000000000002)
473 , ("<stop>", 0, nan, nan, nan, nan, nan, nan, 0.0, -2.113283334294875, -0.5000000000000002)
474 , ("<start> New", 1, nan, nan, nan, 0.0, nan, nan, nan, nan, nan)
475 , ("New York", 3, 1.584962500721156, 1.584962500721156, 1.414213562373095, 1.584962500721156, 1.584962500721156, 1.4142135623730947, 1.584962500721156, 1.584962500721156, 1.4142135623730951)
476 , ("York is", 1, 0, nan, nan, 0.0, -1.584962500721156, -0.7071067811865476, 0.0, nan, nan)
477 , ("is New", 1, 0, nan, nan, 0.0, nan, nan, 0.0, -1.584962500721156, -0.7071067811865474)
478 , ("York and", 1, 0, nan, nan, 0.0, -1.584962500721156, -0.7071067811865476, 0.0, nan, nan)
479 , ("and New", 1, 0, nan, nan, 0.0, nan, nan, 0.0, -1.584962500721156, -0.7071067811865474)
480 , ("York <stop>", 1, nan, nan, nan, nan, nan, nan, 0.0, nan, nan)
481 , ("<start> New York", 1, nan, nan, nan, 0.0, nan, nan, nan, nan, nan)
482 , ("New York is", 1, 0, nan, nan, 0.0, -1.584962500721156, nan, 0.0, nan, nan)
483 , ("York is New", 1, 0, nan, nan, 0.0, nan, nan, 0.0, nan, nan)
484 , ("is New York", 1, 0, nan, nan, 0.0, nan, nan, 0.0, -1.584962500721156, nan)
485 , ("New York and", 1, 0, nan, nan, 0.0, -1.584962500721156, nan, 0.0, nan, nan)
486 , ("York and New", 1, 0, nan, nan, 0.0, nan, nan, 0.0, nan, nan)
487 , ("and New York", 1, 0, nan, nan, 0.0, nan, nan, 0.0, -1.584962500721156, nan)
488 , ("New York <stop>", 1, nan, nan, nan, nan, nan, nan, 0.0, nan, nan)
489 ]
490
491 checks2 = []
492 {-
493 [("to be", 3, 1.2516291673878228, 1.2516291673878228, 1.5535694744293167, nan, 0.9182958340544896)
494 ,("be or", 2, 0.5, nan, nan, nan, 1.0)
495 ,("or not", 1, 0.0, nan, nan, nan, 0.0)
496 ,("not to", 1, 0.0, nan, nan, nan, 0.0)
497 ,("or NOT", 1, 0.0, nan, nan, nan, 0.0)
498 ,("NOT to", 1, 0.0, nan, nan, nan, 0.0)
499 ,("be and", 1, 0.0, nan, nan, nan, 0.0)
500 ]
501 -}
502
503 checks7 =
504 [ ("a b", 4, 2, 1.5, 1.0106455960380136, 2, 1, 0.7302967433402215, 2, 2, 1.2909944487358056)
505 , ("a c", 4, 2, 1.5, 1.0106455960380136, 2, 1, 0.7302967433402215, 2, 2, 1.2909944487358056)
506 , ("a", 8, 2, -0.7139421727208477, 0.9315597394596105, 1, -1.7139421727208477, 0.1695158759052029, 3, 0.2860578272791523, 1.693603603014018)
507 ]
508
509 checks8 =
510 [ ("a b", 4, 2, 1.5, 1.2384061243840367, 2, 1, 0.9190418024406298, 2, 2, 1.5577704463274435)
511 , ("a c", 4, 2, 1.5, 1.2384061243840367, 2, 1, 0.9190418024406298, 2, 2, 1.5577704463274435)
512 , ("a", 8, 2, -1.1151193576322829, 0.8012882295122719, 1, -2.115119357632283, 1.1025957503820932e-2, 3, -0.11511935763228287, 1.5915505015207227)
513 , ("z", 4, 2, -1.1151193576322829, 0.9576679529201777, 2, -1.1151193576322829, 1.0906240295212841, 2, -1.1151193576322829, 0.8247118763190712)
514 ]
515
516 checks9 =
517 [ ("a b", 4, 2, 0.8741854163060885, 0.9234576822288185, 2, -0.25162916738782304, 0.2891449181301934, 2, 2, 1.5577704463274435)
518 , ("a c", 4, 2, 0.8741854163060885, 0.9234576822288185, 2, -0.25162916738782304, 0.2891449181301934, 2, 2, 1.5577704463274435)
519 , ("a", 12, 2.91829583405449, 3.763498724462999e-2, 1.518835832034022, 2.251629167387823, -0.6290316794220367, 1.2162041043595873, 3.5849625007211565, 0.7043016539112967, 1.8214675597084569)
520 ]
521
522 runTestsEleve :: Bool -> IO ()
523 runTestsEleve doChecks =
524 forM_
525 [("example0", 3, example0, checks0)
526 ,("example0", 2, example0, [])
527 ,("example1", 2, example1, [])
528 ,("example2", 3, example2, checks2)
529 ,("example3", 2, example3, [])
530 ,("example4", 4, example4, [])
531 ,("example5", 5, example5, [])
532 ,("example6", 2, example6, [])
533 ,("example7", 2, example7, checks7)
534 ,("example8", 2, example8, checks8)
535 ,("example9", 2, example9, checks9)
536 ]
537 (\(name, n, ex, checks) -> do
538 P.putStrLn $ name <> " " <> show n
539 b <- testEleve False n ex (if doChecks then checks else [])
540 P.putStrLn $ " splitting: " <> if b then "PASS" else "FAIL"
541 )