]> Git — Sourcephile - gargantext.git/blob - src/Gargantext/Core/Text/Terms.hs
[FIX] warnings
[gargantext.git] / src / Gargantext / Core / Text / Terms.hs
1 {-|
2 Module : Gargantext.Core.Text.Ngrams
3 Description : Ngrams definition and tools
4 Copyright : (c) CNRS, 2017 - present
5 License : AGPL + CECILL v3
6 Maintainer : team@gargantext.org
7 Stability : experimental
8 Portability : POSIX
9
10 An @n-gram@ is a contiguous sequence of n items from a given sample of
11 text. In Gargantext application the items are words, n is a non negative
12 integer.
13
14 Using Latin numerical prefixes, an n-gram of size 1 is referred to as a
15 "unigram"; size 2 is a "bigram" (or, less commonly, a "digram"); size
16 3 is a "trigram". English cardinal numbers are sometimes used, e.g.,
17 "four-gram", "five-gram", and so on.
18
19 Source: https://en.wikipedia.org/wiki/Ngrams
20
21 TODO
22 group Ngrams -> Tree
23 compute occ by node of Tree
24 group occs according groups
25
26 compute cooccurrences
27 compute graph
28
29 -}
30
31 {-# LANGUAGE TemplateHaskell #-}
32 {-# LANGUAGE ConstrainedClassMethods #-}
33
34 module Gargantext.Core.Text.Terms
35 where
36
37 import Control.Lens
38 import Data.Map (Map)
39 import qualified Data.Map as Map
40 import Data.Text (Text)
41 import Data.Traversable
42 import GHC.Base (String)
43 import GHC.Generics (Generic)
44 import Gargantext.Core
45 import Gargantext.Core.Types
46 import Gargantext.Core.Flow.Types
47 import Gargantext.Prelude
48 import Gargantext.Core.Text (sentences, HasText(..))
49 import Gargantext.Core.Text.Terms.Eleve (mainEleveWith, Tries, Token, buildTries, toToken)
50 import Gargantext.Database.Schema.Ngrams (Ngrams(..), NgramsType(..))
51 import Gargantext.Core.Text.Terms.Mono (monoTerms)
52 import Gargantext.Database.Prelude (Cmd)
53 import Gargantext.Core.Text.Terms.Mono.Stem (stem)
54 import Gargantext.Core.Text.Terms.Mono.Token.En (tokenize)
55 import Gargantext.Core.Text.Terms.Multi (multiterms)
56 import qualified Data.List as List
57 import qualified Data.Set as Set
58 import qualified Data.Text as Text
59
60 data TermType lang
61 = Mono { _tt_lang :: !lang }
62 | Multi { _tt_lang :: !lang }
63 | MonoMulti { _tt_lang :: !lang }
64 | Unsupervised { _tt_lang :: !lang
65 , _tt_windowSize :: !Int
66 , _tt_ngramsSize :: !Int
67 , _tt_model :: !(Maybe (Tries Token ()))
68 }
69 deriving Generic
70
71 makeLenses ''TermType
72 --group :: [Text] -> [Text]
73 --group = undefined
74
75 -- remove Stop Words
76 -- map (filter (\t -> not . elem t)) $
77 ------------------------------------------------------------------------
78 -- | Sugar to extract terms from text (hiddeng mapM from end user).
79 --extractTerms :: Traversable t => TermType Lang -> t Text -> IO (t [Terms])
80 extractTerms :: TermType Lang -> [Text] -> IO [[Terms]]
81
82 extractTerms (Unsupervised l n s m) xs = mapM (terms (Unsupervised l n s (Just m'))) xs
83 where
84 m' = case m of
85 Just m''-> m''
86 Nothing -> newTries n (Text.intercalate " " xs)
87
88 extractTerms termTypeLang xs = mapM (terms termTypeLang) xs
89
90
91 ------------------------------------------------------------------------
92 withLang :: HasText a
93 => TermType Lang
94 -> [DocumentWithId a]
95 -> TermType Lang
96 withLang (Unsupervised l n s m) ns = Unsupervised l n s m'
97 where
98 m' = case m of
99 Nothing -> -- trace ("buildTries here" :: String)
100 Just $ buildTries n ( fmap toToken
101 $ uniText
102 $ Text.intercalate " . "
103 $ List.concat
104 $ map hasText ns
105 )
106 just_m -> just_m
107 withLang l _ = l
108 ------------------------------------------------------------------------
109
110
111 class ExtractNgramsT h
112 where
113 extractNgramsT :: HasText h
114 => TermType Lang
115 -> h
116 -> Cmd err (Map Ngrams (Map NgramsType Int))
117
118 filterNgramsT :: Int -> Map Ngrams (Map NgramsType Int)
119 -> Map Ngrams (Map NgramsType Int)
120 filterNgramsT s ms = Map.fromList $ map (\a -> filter' s a) $ Map.toList ms
121 where
122 filter' s' (ng@(Ngrams t n),y) = case (Text.length t) < s' of
123 True -> (ng,y)
124 False -> (Ngrams (Text.take s' t) n , y)
125
126
127 -- =======================================================
128
129 -- | Terms from Text
130 -- Mono : mono terms
131 -- Multi : multi terms
132 -- MonoMulti : mono and multi
133 -- TODO : multi terms should exclude mono (intersection is not empty yet)
134 terms :: TermType Lang -> Text -> IO [Terms]
135 terms (Mono lang) txt = pure $ monoTerms lang txt
136 terms (Multi lang) txt = multiterms lang txt
137 terms (MonoMulti lang) txt = terms (Multi lang) txt
138 terms (Unsupervised lang n s m) txt = termsUnsupervised (Unsupervised lang n s (Just m')) txt
139 where
140 m' = maybe (newTries n txt) identity m
141 -- terms (WithList list) txt = pure . concat $ extractTermsWithList list txt
142 ------------------------------------------------------------------------
143
144 text2term :: Lang -> [Text] -> Terms
145 text2term _ [] = Terms [] Set.empty
146 text2term lang txt = Terms txt (Set.fromList $ map (stem lang) txt)
147
148 isPunctuation :: Text -> Bool
149 isPunctuation x = List.elem x $ (Text.pack . pure)
150 <$> ("!?(),;." :: String)
151
152 -- | Unsupervised ngrams extraction
153 -- language agnostic extraction
154 -- TODO: remove IO
155 -- TODO: newtype BlockText
156
157 type WindowSize = Int
158 type MinNgramSize = Int
159
160 termsUnsupervised :: TermType Lang -> Text -> IO [Terms]
161 termsUnsupervised (Unsupervised l n s m) =
162 pure
163 . map (text2term l)
164 . List.nub
165 . (List.filter (\l' -> List.length l' >= s))
166 . List.concat
167 . mainEleveWith (maybe (panic "no model") identity m) n
168 . uniText
169 termsUnsupervised _ = undefined
170
171 newTries :: Int -> Text -> Tries Token ()
172 newTries n t = buildTries n (fmap toToken $ uniText t)
173
174 -- | TODO removing long terms > 24
175 uniText :: Text -> [[Text]]
176 uniText = map (List.filter (not . isPunctuation))
177 . map tokenize
178 . sentences -- TODO get sentences according to lang
179 . Text.toLower
180