5 Gargantext is a collaborative web platform for the exploration of sets
6 of unstructured documents. It combines tools from natural language
7 processing, text-mining, complex networks analysis and interactive data
8 visualization to pave the way toward new kinds of interactions with your
11 This software is a free software, developed by the CNRS Complex Systems
12 Institute of Paris Île-de-France (ISC-PIF) and its partners.
16 Disclaimer: this project is still in development, this is work in
17 progress. Please report and improve this documentation if you encounter issues.
21 NOTE: Default build (with optimizations) requires large amounts of RAM (16GB at least). To avoid heavy compilation times and swapping out your machine, it is recommended to `stack build` with the `--fast-` flag, i.e.:
23 stack --docker build --fast
27 stack --nix build --fast
29 This might be related to the [broken Swagger `-O2` issue](https://github.com/haskell-servant/servant/issues/986).
34 curl -sSL https://gitlab.iscpif.fr/gargantext/haskell-gargantext/raw/dev/devops/docker/docker-install | sh
40 curl -sSL https://gitlab.iscpif.fr/gargantext/haskell-gargantext/raw/dev/devops/debian/install | sh
46 curl -sSL https://gitlab.iscpif.fr/gargantext/haskell-gargantext/raw/dev/devops/ubuntu/install | sh
51 1. CoreNLP is needed (EN and FR); This dependency will not be needed soon.
54 ./devops/install-corenlp
57 2. Louvain C++ needed to draw the socio-semantic graphs
59 NOTE: This is already added in the Docker build.
62 git clone https://gitlab.iscpif.fr/gargantext/clustering-louvain-cplusplus.git
63 cd clustering-louvain-cplusplus
78 Initialization schema should be loaded automatically (from `devops/postgres/schema.sql`).
82 ##### Fix the passwords
84 Change the passwords in gargantext.ini_toModify then move it:
87 mv gargantext.ini_toModify gargantext.ini
89 (`.gitignore` avoids adding this file to the repository by mistake)
94 Users have to be created first (`user1` is created as instance):
98 ~/.local/bin/gargantext-init "gargantext.ini"
101 For Docker env, first create the appropriate image:
105 docker build -t fpco/stack-build:lts-16.26-garg .
111 stack --docker run gargantext-init -- gargantext.ini
116 You can import some data with:
118 docker run --rm -it -p 9000:9000 cgenie/corenlp-garg
119 stack exec gargantext-import -- "corpusCsvHal" "user1" "IMT3" gargantext.ini 10000 ./1000.csv
124 It is also possible to build everything with [Nix](https://nixos.org/) instead of Docker:
127 stack --nix exec gargantext-import -- "corpusCsvHal" "user1" "IMT3" gargantext.ini 10000 ./1000.csv
128 stack --nix exec gargantext-server -- --ini gargantext.ini --run Prod
133 ### Multi-User with Graphical User Interface (Server Mode)
136 ~/.local/bin/stack --docker exec gargantext-server -- --ini "gargantext.ini" --run Prod
139 Then you can log in with `user1` / `1resu`.
142 ### Command Line Mode tools
144 #### Simple cooccurrences computation and indexation from a list of Ngrams
147 stack --docker exec gargantext-cli -- CorpusFromGarg.csv ListFromGarg.csv Ouput.json
150 ### Analyzing the ngrams table repo
152 We store the repository in directory `repos` in the [CBOR](https://cbor.io/)
153 file format. To decode it to JSON and analyze, say, using
154 [jq](https://shapeshed.com/jq-json/), use the following command:
157 cat repos/repo.cbor.v5 | stack --nix exec gargantext-cbor2json | jq .