2 Module : Gargantext.Core.Methods.Distances
4 Copyright : (c) CNRS, 2017-Present
5 License : AGPL + CECILL v3
6 Maintainer : team@gargantext.org
7 Stability : experimental
10 Motivation and definition of the @Conditional@ distance.
13 {-# LANGUAGE BangPatterns #-}
14 {-# LANGUAGE Strict #-}
15 module Gargantext.Core.Methods.Distances.Conditional
18 import Data.Matrix hiding (identity)
20 import Data.List (sortOn)
23 import qualified Data.Map as M
25 import qualified Data.Set as S
27 import qualified Data.Vector as V
29 import Gargantext.Prelude
30 import Gargantext.Core.Viz.Graph.Utils
32 ------------------------------------------------------------------------
33 ------------------------------------------------------------------------
34 -- | Optimisation issue
36 toBeOptimized :: (Num a, Fractional a, Ord a) => Matrix a -> Matrix a
37 toBeOptimized m = proba Col m
39 ------------------------------------------------------------------------
41 -- Compute the probability from axis
42 -- x' = x / (sum Col x)
43 proba :: (Num a, Fractional a) => Axis -> Matrix a -> Matrix a
44 proba a m = mapOn a (\c x -> x / V.sum (axis a c m)) m
47 mapOn :: Axis -> (AxisId -> a -> a) -> Matrix a -> Matrix a
48 mapOn a f m = V.foldl' f' m (V.enumFromTo 1 (nOf a m))
50 f' m' c = mapOnly a f c m'
52 mapOnly :: Axis -> (AxisId -> a -> a) -> AxisId -> Matrix a -> Matrix a
56 mapAll :: (a -> a) -> Matrix a -> Matrix a
57 mapAll f m = mapOn Col (\_ -> f) m
60 ---------------------------------------------------------------
61 -- | Compute a distance from axis
62 -- xs = (sum Col x') - x'
63 distFromSum :: (Num a, Fractional a)
64 => Axis -> Matrix a -> Matrix a
65 distFromSum a m = mapOn a (\c x -> V.sum (axis a c m) - x) m
66 ---------------------------------------------------------------
67 ---------------------------------------------------------------
68 -- | To compute included/excluded or specific/generic scores
69 opWith :: (Fractional a1, Num a1)
70 => (Matrix a2 -> t -> Matrix a1) -> Matrix a2 -> t -> Matrix a1
71 opWith op xs ys = mapAll (\x -> x / (2*n -1)) (xs `op` ys)
73 n = fromIntegral $ nOf Col xs
74 ---------------------------------------------------------------
77 -------------------------------------------------------
78 conditional :: (Num a, Fractional a, Ord a) => Matrix a -> Matrix a
79 conditional m = filterMat (threshold m') m'
81 ------------------------------------------------------------------------
83 -- x' = x / (sum Col x)
86 ------------------------------------------------------------------------
87 -- xs = (sum Col x') - x'
88 xs = distFromSum Col x'
89 -- ys = (sum Row x') - x'
90 ys = distFromSum Row x'
92 ------------------------------------------------------------------------
93 -- | Top included or excluded
95 -- ie = ( xs + ys) / (2 * (x.shape[0] - 1))
97 -- | Top specific or generic
99 -- sg = ( xs - ys) / (2 * (x.shape[0] - 1))
102 nodes_kept = take k' $ S.toList
103 $ foldl' (\s (n1,n2) -> insert [n1,n2] s) S.empty
105 $ nodes_included k <> nodes_specific k
107 nodes_included n = take n $ sortOn snd $ toListsWithIndex ie
108 nodes_specific n = take n $ sortOn snd $ toListsWithIndex sg
109 insert as s = foldl' (\s' a -> S.insert a s') s as
113 dico_nodes :: Map Int Int
114 dico_nodes = M.fromList $ zip ([1..] :: [Int]) nodes_kept
115 --dico_nodes_rev = M.fromList $ zip nodes_kept [1..]
117 m' = matrix (length nodes_kept)
119 (\(i,j) -> getElem ((M.!) dico_nodes i) ((M.!) dico_nodes j) x')
121 threshold m'' = V.minimum
122 $ V.map (\cId -> V.maximum $ getCol cId m'')
123 (V.enumFromTo 1 (nOf Col m'') )
125 filterMat t m'' = mapAll (\x -> filter' t x) m''
127 filter' t' x = case (x >= t') of
130 ------------------------------------------------------------------------