]> Git — Sourcephile - gargantext.git/blob - src/Gargantext/Core/Viz/Phylo/TemporalMatching.hs
resolve the conflict
[gargantext.git] / src / Gargantext / Core / Viz / Phylo / TemporalMatching.hs
1 {-|
2 Module : Gargantext.Core.Viz.Phylo.TemporalMatching
3 Description : Module dedicated to the adaptative temporal matching of a Phylo.
4 Copyright : (c) CNRS, 2017-Present
5 License : AGPL + CECILL v3
6 Maintainer : team@gargantext.org
7 Stability : experimental
8 Portability : POSIX
9 Reference : Chavalarias, D., Lobbé, Q. & Delanoë, A. Draw me Science. Scientometrics 127, 545–575 (2022). https://doi.org/10.1007/s11192-021-04186-5
10 -}
11
12 module Gargantext.Core.Viz.Phylo.TemporalMatching where
13
14 import Control.Lens hiding (Level)
15 import Control.Parallel.Strategies (parList, rdeepseq, using)
16 import Data.Ord
17 import Data.List (concat, splitAt, tail, sortOn, sortBy, (++), intersect, null, inits, groupBy, scanl, nub, nubBy, union, dropWhile, partition, or)
18 import Data.Map (Map, fromList, elems, restrictKeys, unionWith, findWithDefault, keys, (!), empty, mapKeys, adjust, filterWithKey)
19 import Debug.Trace (trace)
20 import Gargantext.Core.Viz.Phylo
21 import Gargantext.Core.Viz.Phylo.PhyloTools
22 import Gargantext.Prelude
23 import Prelude (tan,pi)
24 import Text.Printf
25 import qualified Data.Map as Map
26 import qualified Data.List as List
27 import qualified Data.Set as Set
28 import qualified Data.Vector as Vector
29
30 type Branch = [PhyloGroup]
31 type FinalQuality = Double
32 type LocalQuality = Double
33 type ShouldTry = Bool
34
35
36 ----------------------------
37 -- | Similarity Measure | --
38 ----------------------------
39
40
41 {-
42 -- compute a jaccard similarity between two lists
43 -}
44 jaccard :: [Int] -> [Int] -> Double
45 jaccard inter' union' = ((fromIntegral . length) $ inter') / ((fromIntegral . length) $ union')
46
47
48 {-
49 -- process the inverse sumLog
50 -}
51 sumInvLog' :: Double -> Double -> [Double] -> Double
52 sumInvLog' s nb diago = foldl (\mem occ -> mem + (1 / (log (occ + 1/ tan (s * pi / 2)) / log (nb + 1/ tan (s * pi / 2))))) 0 diago
53
54
55 {-
56 -- process the sumLog
57 -}
58 sumLog' :: Double -> Double -> [Double] -> Double
59 sumLog' s nb diago = foldl (\mem occ -> mem + (log (occ + 1 / tan (s * pi / 2)) / log (nb + 1/ tan (s * pi / 2)))) 0 diago
60
61
62 {-
63 -- compute the weightedLogJaccard
64 -}
65 weightedLogJaccard' :: Double -> Double -> Map Int Double -> [Int] -> [Int] -> Double
66 weightedLogJaccard' sens nbDocs diago ngrams ngrams'
67 | null ngramsInter = 0
68 | ngramsInter == ngramsUnion = 1
69 | sens == 0 = jaccard ngramsInter ngramsUnion
70 | sens > 0 = (sumInvLog' sens nbDocs diagoInter) / (sumInvLog' sens nbDocs diagoUnion)
71 | otherwise = (sumLog' sens nbDocs diagoInter) / (sumLog' sens nbDocs diagoUnion)
72 where
73 --------------------------------------
74 ngramsInter :: [Int]
75 ngramsInter = intersect ngrams ngrams'
76 --------------------------------------
77 ngramsUnion :: [Int]
78 ngramsUnion = union ngrams ngrams'
79 --------------------------------------
80 diagoInter :: [Double]
81 diagoInter = elems $ restrictKeys diago (Set.fromList ngramsInter)
82 --------------------------------------
83 diagoUnion :: [Double]
84 diagoUnion = elems $ restrictKeys diago (Set.fromList ngramsUnion)
85 --------------------------------------
86
87
88 {-
89 -- compute the weightedLogSim
90 -- Adapted from Wang, X., Cheng, Q., Lu, W., 2014. Analyzing evolution of research topics with NEViewer: a new method based on dynamic co-word networks. Scientometrics 101, 1253–1271. https://doi.org/10.1007/s11192-014-1347-y (log added in the formula + pair comparison)
91 -- tests not conclusive
92 -}
93 weightedLogSim' :: Double -> Double -> Map Int Double -> [Int] -> [Int] -> Double
94 weightedLogSim' sens nbDocs diago ego_ngrams target_ngrams
95 | null ngramsInter = 0
96 | ngramsInter == ngramsUnion = 1
97 | sens == 0 = jaccard ngramsInter ngramsUnion
98 | sens > 0 = (sumInvLog' sens nbDocs diagoInter) / minimum [(sumInvLog' sens nbDocs diagoEgo),(sumInvLog' sens nbDocs diagoTarget)]
99 | otherwise = (sumLog' sens nbDocs diagoInter) / minimum [(sumLog' sens nbDocs diagoEgo),(sumLog' sens nbDocs diagoTarget)]
100 where
101 --------------------------------------
102 ngramsInter :: [Int]
103 ngramsInter = intersect ego_ngrams target_ngrams
104 --------------------------------------
105 ngramsUnion :: [Int]
106 ngramsUnion = union ego_ngrams target_ngrams
107 --------------------------------------
108 diagoInter :: [Double]
109 diagoInter = elems $ restrictKeys diago (Set.fromList ngramsInter)
110 --------------------------------------
111 diagoEgo :: [Double]
112 diagoEgo = elems $ restrictKeys diago (Set.fromList ego_ngrams)
113 --------------------------------------
114 diagoTarget :: [Double]
115 diagoTarget = elems $ restrictKeys diago (Set.fromList target_ngrams)
116 --------------------------------------
117
118
119 {-
120 -- perform a seamilarity measure between a given group and a pair of targeted groups
121 -}
122 toSimilarity :: Double -> Map Int Double -> PhyloSimilarity -> [Int] -> [Int] -> [Int] -> Double
123 toSimilarity nbDocs diago similarity egoNgrams targetNgrams targetNgrams' =
124 case similarity of
125 WeightedLogJaccard sens _ ->
126 let pairNgrams = if targetNgrams == targetNgrams'
127 then targetNgrams
128 else union targetNgrams targetNgrams'
129 in weightedLogJaccard' sens nbDocs diago egoNgrams pairNgrams
130 WeightedLogSim sens _ ->
131 let pairNgrams = if targetNgrams == targetNgrams'
132 then targetNgrams
133 else union targetNgrams targetNgrams'
134 in weightedLogSim' sens nbDocs diago egoNgrams pairNgrams
135 Hamming _ _ -> undefined
136
137
138 -----------------------------
139 -- | Pointers & Matrices | --
140 -----------------------------
141
142
143 findLastPeriod :: Filiation -> [Period] -> Period
144 findLastPeriod fil periods = case fil of
145 ToParents -> head' "findLastPeriod" (sortOn fst periods)
146 ToChilds -> last' "findLastPeriod" (sortOn fst periods)
147 ToChildsMemory -> undefined
148 ToParentsMemory -> undefined
149
150 removeOldPointers :: [Pointer] -> Filiation -> Double -> PhyloSimilarity -> Period
151 -> [((PhyloGroupId,[Int]),(PhyloGroupId,[Int]))]
152 -> [((PhyloGroupId,[Int]),(PhyloGroupId,[Int]))]
153 removeOldPointers oldPointers fil thr prox prd pairs
154 | null oldPointers = pairs
155 | null (filterPointers prox thr oldPointers) =
156 let lastMatchedPrd = findLastPeriod fil (map (fst . fst . fst) oldPointers)
157 in if lastMatchedPrd == prd
158 then []
159 else filter (\((id,_),(id',_)) ->
160 case fil of
161 ToChildsMemory -> undefined
162 ToParentsMemory -> undefined
163 ToParents -> (((fst . fst . fst) id ) < (fst lastMatchedPrd))
164 || (((fst . fst . fst) id') < (fst lastMatchedPrd))
165 ToChilds -> (((fst . fst . fst) id ) > (fst lastMatchedPrd))
166 || (((fst . fst . fst) id') > (fst lastMatchedPrd))) pairs
167 | otherwise = []
168
169 filterPointers :: PhyloSimilarity -> Double -> [Pointer] -> [Pointer]
170 filterPointers proxi thr pts = filter (\(_,w) -> filterSimilarity proxi thr w) pts
171
172 filterPointers' :: PhyloSimilarity -> Double -> [(Pointer,[Int])] -> [(Pointer,[Int])]
173 filterPointers' proxi thr pts = filter (\((_,w),_) -> filterSimilarity proxi thr w) pts
174
175
176 reduceDiagos :: Map Date Cooc -> Map Int Double
177 reduceDiagos diagos = mapKeys (\(k,_) -> k)
178 $ foldl (\acc diago -> unionWith (+) acc diago) empty (elems diagos)
179
180 filterPointersByPeriod :: Filiation -> [(Pointer,[Int])] -> [Pointer]
181 filterPointersByPeriod fil pts =
182 let pts' = sortOn (fst . fst . fst . fst) pts
183 inf = (fst . fst . fst . fst) $ head' "filterPointersByPeriod" pts'
184 sup = (fst . fst . fst . fst) $ last' "filterPointersByPeriod" pts'
185 in map fst
186 $ nubBy (\pt pt' -> snd pt == snd pt')
187 $ filter (\pt -> ((fst . fst . fst . fst) pt == inf) || ((fst . fst . fst . fst) pt == sup))
188 $ case fil of
189 ToParents -> reverse pts'
190 ToChilds -> pts'
191 ToChildsMemory -> undefined
192 ToParentsMemory -> undefined
193
194 filterDocs :: Map Date Double -> [Period] -> Map Date Double
195 filterDocs d pds = restrictKeys d $ periodsToYears pds
196
197 filterDiago :: Map Date Cooc -> [Period] -> Map Date Cooc
198 filterDiago diago pds = restrictKeys diago $ periodsToYears pds
199
200
201 ---------------------------------
202 -- | Inter-temporal matching | --
203 ---------------------------------
204
205
206 {-
207 -- perform the related component algorithm, construct the resulting branch id and update the corresponding group's branch id
208 -}
209 groupsToBranches :: Map PhyloGroupId PhyloGroup -> [Branch]
210 groupsToBranches groups =
211 {- run the related component algorithm -}
212 let egos = groupBy (\gs gs' -> (fst $ fst $ head' "egos" gs) == (fst $ fst $ head' "egos" gs'))
213 $ sortOn (\gs -> fst $ fst $ head' "egos" gs)
214 $ map (\group -> [getGroupId group]
215 ++ (map fst $ group ^. phylo_groupPeriodParents)
216 ++ (map fst $ group ^. phylo_groupPeriodChilds) ) $ elems groups
217 -- first find the related components by inside each ego's period
218 -- a supprimer
219 graph' = map relatedComponents egos
220 -- then run it for the all the periods
221 branches = zip [1..]
222 $ relatedComponents $ concat (graph' `using` parList rdeepseq)
223 -- update each group's branch id
224 in map (\(bId,branch) ->
225 let groups' = map (\group -> group & phylo_groupBranchId %~ (\(lvl,lst) -> (lvl,lst ++ [bId])))
226 $ elems $ restrictKeys groups (Set.fromList branch)
227 in groups' `using` parList rdeepseq
228 ) branches `using` parList rdeepseq
229
230
231 {-
232 -- find the best pair/singleton of parents/childs for a given group
233 -}
234 makePairs :: (PhyloGroupId,[Int]) -> [(PhyloGroupId,[Int])] -> [Period] -> [Pointer] -> Filiation -> Double -> PhyloSimilarity
235 -> Map Date Double -> Map Date Cooc -> [((PhyloGroupId,[Int]),(PhyloGroupId,[Int]))]
236 makePairs (egoId, egoNgrams) candidates periods oldPointers fil thr prox docs diagos =
237 if (null periods)
238 then []
239 else removeOldPointers oldPointers fil thr prox lastPrd
240 {- at least on of the pair candidates should be from the last added period -}
241 $ filter (\((id,_),(id',_)) -> ((fst . fst) id == lastPrd) || ((fst . fst) id' == lastPrd))
242 $ filter (\((id,_),(id',_)) -> (elem id inPairs) || (elem id' inPairs))
243 $ listToCombi' candidates
244 where
245 --------------------------------------
246 inPairs :: [PhyloGroupId]
247 inPairs = map fst
248 $ filter (\(id,ngrams) ->
249 let nbDocs = (sum . elems) $ filterDocs docs ([(fst . fst) egoId, (fst . fst) id])
250 diago = reduceDiagos $ filterDiago diagos ([(fst . fst) egoId, (fst . fst) id])
251 in (toSimilarity nbDocs diago prox egoNgrams egoNgrams ngrams) >= thr
252 ) candidates
253 --------------------------------------
254 lastPrd :: Period
255 lastPrd = findLastPeriod fil periods
256 --------------------------------------
257
258 {-
259 -- find the best temporal links between a given group and its parents/childs
260 -}
261 phyloGroupMatching :: [[(PhyloGroupId,[Int])]] -> Filiation -> PhyloSimilarity -> Map Date Double -> Map Date Cooc
262 -> Double -> [Pointer] -> (PhyloGroupId,[Int]) -> [Pointer]
263 phyloGroupMatching candidates filiation proxi docs diagos thr oldPointers (id,ngrams) =
264 if (null $ filterPointers proxi thr oldPointers)
265 -- if no previous pointers satisfy the current threshold then let's find new pointers
266 then if null nextPointers
267 then []
268 else filterPointersByPeriod filiation
269 -- 2) keep only the best set of pointers grouped by Similarity
270 $ head' "phyloGroupMatching"
271 $ groupBy (\pt pt' -> (snd . fst) pt == (snd . fst) pt')
272 -- 1) find the first time frame where at leats one pointer satisfies the Similarity threshold
273 $ sortBy (comparing (Down . snd . fst)) $ head' "pointers" nextPointers
274 else oldPointers
275 where
276 nextPointers :: [[(Pointer,[Int])]]
277 nextPointers = take 1
278 -- stop as soon as we find a time frame where at least one singleton / pair satisfies the threshold
279 $ dropWhile (null)
280 -- for each time frame, process the Similarity on relevant pairs of targeted groups
281 $ scanl (\acc targets ->
282 let periods = nub $ map (fst . fst . fst) targets
283 lastPrd = findLastPeriod filiation periods
284 nbdocs = sum $ elems $ (filterDocs docs ([(fst . fst) id] ++ periods))
285 diago = reduceDiagos
286 $ filterDiago diagos ([(fst . fst) id] ++ periods)
287 singletons = processSimilarity nbdocs diago $ map (\g -> (g,g)) $ filter (\g -> (fst . fst . fst) g == lastPrd) targets
288 pairs = makePairs (id,ngrams) targets periods oldPointers filiation thr proxi docs diagos
289 in
290 if (null singletons)
291 then acc ++ ( processSimilarity nbdocs diago pairs )
292 else acc ++ singletons
293 ) [] $ map concat $ inits candidates -- groups from [[1900],[1900,1901],[1900,1901,1902],...]
294 -----------------------------
295 processSimilarity :: Double -> Map Int Double -> [((PhyloGroupId,[Int]),(PhyloGroupId,[Int]))] -> [(Pointer,[Int])]
296 processSimilarity nbdocs diago targets = filterPointers' proxi thr
297 $ concat
298 $ map (\(c,c') ->
299 let similarity = toSimilarity nbdocs diago proxi ngrams (snd c) (snd c')
300 in if ((c == c') || (snd c == snd c'))
301 then [((fst c,similarity),snd c)]
302 else [((fst c,similarity),snd c),((fst c',similarity),snd c')] ) targets
303
304
305 {-
306 -- get the upstream/downstream timescale of a given period
307 -}
308 getNextPeriods :: Filiation -> Int -> Period -> [Period] -> [Period]
309 getNextPeriods fil max' pId pIds =
310 case fil of
311 ToChilds -> take max' $ (tail . snd) $ splitAt (elemIndex' pId pIds) pIds
312 ToParents -> take max' $ (reverse . fst) $ splitAt (elemIndex' pId pIds) pIds
313 ToChildsMemory -> undefined
314 ToParentsMemory -> undefined
315
316
317 {-
318 -- find all the candidates parents/childs of ego
319 -}
320 getCandidates :: Int -> PhyloGroup -> [[(PhyloGroupId,[Int])]] -> [[(PhyloGroupId,[Int])]]
321 getCandidates minNgrams ego targets =
322 if (length (ego ^. phylo_groupNgrams)) > 1
323 then
324 map (\groups' -> filter (\g' -> (> minNgrams) $ length $ intersect (ego ^. phylo_groupNgrams) (snd g')) groups') targets
325 else
326 map (\groups' -> filter (\g' -> (not . null) $ intersect (ego ^. phylo_groupNgrams) (snd g')) groups') targets
327
328
329 {-
330 -- set up and start performing the upstream/downstream inter‐temporal matching period by period
331 -}
332 reconstructTemporalLinks :: Int -> [Period] -> PhyloSimilarity -> Double -> Map Date Double -> Map Date Cooc -> [PhyloGroup] -> [PhyloGroup]
333 reconstructTemporalLinks frame periods similarity thr docs coocs groups =
334 let groups' = groupByField _phylo_groupPeriod groups
335 in foldl' (\acc prd ->
336 let -- 1) find the parents/childs matching periods
337 periodsPar = getNextPeriods ToParents frame prd periods
338 periodsChi = getNextPeriods ToChilds frame prd periods
339 -- 2) find the parents/childs matching candidates
340 candidatesPar = map (\prd' -> map (\g -> (getGroupId g, g ^. phylo_groupNgrams)) $ findWithDefault [] prd' groups') periodsPar
341 candidatesChi = map (\prd' -> map (\g -> (getGroupId g, g ^. phylo_groupNgrams)) $ findWithDefault [] prd' groups') periodsChi
342 -- 3) find the parents/childs number of docs by years
343 docsPar = filterDocs docs ([prd] ++ periodsPar)
344 docsChi = filterDocs docs ([prd] ++ periodsChi)
345 -- 4) find the parents/child diago by years
346 diagoPar = filterDiago (map coocToDiago coocs) ([prd] ++ periodsPar)
347 diagoChi = filterDiago (map coocToDiago coocs) ([prd] ++ periodsPar)
348 -- 5) match in parallel all the groups (egos) to their possible candidates
349 egos = map (\ego ->
350 let pointersPar = phyloGroupMatching (getCandidates (getMinSharedNgrams similarity) ego candidatesPar) ToParents similarity docsPar diagoPar
351 thr (getPeriodPointers ToParents ego) (getGroupId ego, ego ^. phylo_groupNgrams)
352 pointersChi = phyloGroupMatching (getCandidates (getMinSharedNgrams similarity) ego candidatesChi) ToChilds similarity docsChi diagoChi
353 thr (getPeriodPointers ToChilds ego) (getGroupId ego, ego ^. phylo_groupNgrams)
354 in addPointers ToChilds TemporalPointer pointersChi
355 $ addPointers ToParents TemporalPointer pointersPar
356 $ addMemoryPointers ToChildsMemory TemporalPointer thr pointersChi
357 $ addMemoryPointers ToParentsMemory TemporalPointer thr pointersPar ego)
358 $ findWithDefault [] prd groups'
359 egos' = egos `using` parList rdeepseq
360 in acc ++ egos'
361 ) [] periods
362
363
364 {-
365 -- find all the groups matching a list of ngrams
366 -}
367 findIdsFromNgrams :: [Int] -> Map Int [PhyloGroupId] -> [PhyloGroupId]
368 findIdsFromNgrams ngrams roots = nub $ concat $ elems $ filterWithKey (\k _ -> elem k ngrams) roots
369
370 formatCandidates :: Filiation -> [PhyloGroup] -> [[(PhyloGroupId,[Int])]]
371 formatCandidates fil groups = case fil of
372 ToChilds -> map (\groups' -> map (\g -> (getGroupId g, getGroupNgrams g)) groups')
373 $ elems
374 $ groupByField _phylo_groupPeriod groups
375 ToParents -> reverse
376 $ map (\groups' -> map (\g -> (getGroupId g, getGroupNgrams g)) groups')
377 $ elems
378 $ groupByField _phylo_groupPeriod groups
379 ToChildsMemory -> undefined
380 ToParentsMemory -> undefined
381
382 filterByIds :: PhyloGroupId -> [PhyloGroupId] -> [PhyloGroup] -> [PhyloGroup]
383 filterByIds egoId ids groups = filter (\g -> ((getGroupId g) /= egoId) && (elem (getGroupId g) ids)) groups
384
385 filterByPeriods :: [Period] -> [PhyloGroup] -> [PhyloGroup]
386 filterByPeriods periods groups = filter (\g -> elem (g ^. phylo_groupPeriod) periods) groups
387
388 filterByNgrams :: Int -> [Int] -> [PhyloGroup] -> [PhyloGroup]
389 filterByNgrams inf ngrams groups =
390 if (length ngrams) > 1
391 then
392 filter (\g -> (> inf) $ length $ intersect (ngrams) (getGroupNgrams g)) groups
393 else
394 filter (\g -> (not . null) $ intersect (ngrams) (getGroupNgrams g)) groups
395
396 {-
397 -- perform the upstream/downstream inter‐temporal matching process group by group
398 -}
399 reconstructTemporalLinks' :: Int -> [Period] -> PhyloSimilarity -> Double -> Map Date Double -> Map Date Cooc -> Map Int [PhyloGroupId] -> [PhyloGroup] -> [PhyloGroup]
400 reconstructTemporalLinks' frame periods similarity thr docs coocs roots groups =
401 let egos = map (\ego ->
402 let -- 1) find the parents/childs matching periods
403 periodsPar = getNextPeriods ToParents frame (ego ^. phylo_groupPeriod) periods
404 periodsChi = getNextPeriods ToChilds frame (ego ^. phylo_groupPeriod) periods
405 -- 2) find the parents/childs matching candidates
406 candidatesPar = formatCandidates ToParents
407 $ filterByNgrams (getMinSharedNgrams similarity) (getGroupNgrams ego)
408 $ filterByPeriods periodsPar
409 $ filterByIds (getGroupId ego) (findIdsFromNgrams (getGroupNgrams ego) roots) groups
410 candidatesChi = formatCandidates ToChilds
411 $ filterByNgrams (getMinSharedNgrams similarity) (getGroupNgrams ego)
412 $ filterByPeriods periodsChi
413 $ filterByIds (getGroupId ego) (findIdsFromNgrams (getGroupNgrams ego) roots) groups
414 -- 3) find the parents/childs number of docs by years
415 docsPar = filterDocs docs ([(ego ^. phylo_groupPeriod)] ++ periodsPar)
416 docsChi = filterDocs docs ([(ego ^. phylo_groupPeriod)] ++ periodsChi)
417 -- 4) find the parents/child diago by years
418 diagoPar = filterDiago (map coocToDiago coocs) ([(ego ^. phylo_groupPeriod)] ++ periodsPar)
419 diagoChi = filterDiago (map coocToDiago coocs) ([(ego ^. phylo_groupPeriod)] ++ periodsPar)
420 -- 5) match ego to their candidates through time
421 pointersPar = phyloGroupMatching candidatesPar ToParents similarity docsPar diagoPar thr (getPeriodPointers ToParents ego) (getGroupId ego, ego ^. phylo_groupNgrams)
422 pointersChi = phyloGroupMatching candidatesChi ToParents similarity docsChi diagoChi thr (getPeriodPointers ToChilds ego) (getGroupId ego, ego ^. phylo_groupNgrams)
423 in addPointers ToChilds TemporalPointer pointersChi
424 $ addPointers ToParents TemporalPointer pointersPar
425 $ addMemoryPointers ToChildsMemory TemporalPointer thr pointersChi
426 $ addMemoryPointers ToParentsMemory TemporalPointer thr pointersPar ego
427 ) groups
428 in egos `using` parList rdeepseq
429
430
431
432 {-
433 -- reconstruct a phylomemetic network from a list of groups and from a given threshold
434 -}
435 toPhylomemeticNetwork :: Int -> [Period] -> PhyloSimilarity -> Double -> Map Date Double -> Map Date Cooc -> Map Int [PhyloGroupId] -> [PhyloGroup] -> [Branch]
436 toPhylomemeticNetwork timescale periods similarity thr docs coocs roots groups =
437 groupsToBranches $ fromList $ map (\g -> (getGroupId g, g))
438 $ reconstructTemporalLinks' timescale periods similarity thr docs coocs roots groups
439
440
441 ----------------------------
442 -- | Quality Assessment | --
443 ----------------------------
444
445
446 {-
447 -- filter the branches containing x
448 -}
449 relevantBranches :: Int -> [Branch] -> [Branch]
450 relevantBranches x branches =
451 filter (\groups -> (any (\group -> elem x $ group ^. phylo_groupNgrams) groups)) branches
452
453
454 {-
455 -- compute the accuracy ξ
456 -- the accuracy of a branch relatively to a root x is computed only over the periods where clusters mentionning x in the phylo do exist
457 -}
458 accuracy :: Int -> [(Date,Date)] -> Branch -> Double
459 accuracy x periods bk = ((fromIntegral $ length $ filter (\g -> elem x $ g ^. phylo_groupNgrams) bk') / (fromIntegral $ length bk'))
460 where
461 ---
462 bk' :: [PhyloGroup]
463 bk' = filter (\g -> elem (g ^. phylo_groupPeriod) periods) bk
464
465
466 {-
467 -- compute the recall ρ
468 -}
469 recall :: Int -> Branch -> [Branch] -> Double
470 recall x bk bx = ((fromIntegral $ length $ filter (\g -> elem x $ g ^. phylo_groupNgrams) bk)
471 / (fromIntegral $ length $ filter (\g -> elem x $ g ^. phylo_groupNgrams) $ concat bx))
472
473
474 {-
475 -- compute the F-score function
476 -}
477 fScore :: Double -> Int -> [(Date,Date)] -> [PhyloGroup] -> [[PhyloGroup]] -> Double
478 fScore lambda x periods bk bx =
479 let rec = recall x bk bx
480 acc = accuracy x periods bk
481 in ((1 + lambda ** 2) * acc * rec)
482 / (((lambda ** 2) * acc + rec))
483
484
485 {-
486 -- compute the number of groups
487 -}
488 wk :: [PhyloGroup] -> Double
489 wk bk = fromIntegral $ length bk
490
491
492 {-
493 -- compute the recall ρ for all the branches
494 -}
495 globalRecall :: Map Int Double -> [Branch] -> Double
496 globalRecall freq branches =
497 if (null branches)
498 then 0
499 else sum
500 $ map (\x ->
501 let px = freq ! x
502 bx = relevantBranches x branches
503 wks = sum $ map wk bx
504 in (px / pys) * (sum $ map (\bk -> ((wk bk) / wks) * (recall x bk bx)) bx))
505 $ keys freq
506 where
507 pys :: Double
508 pys = sum (elems freq)
509
510
511 {-
512 -- compute the accuracy ξ for all the branches
513 -}
514 globalAccuracy :: Map Int Double -> [Branch] -> Double
515 globalAccuracy freq branches =
516 if (null branches)
517 then 0
518 else sum
519 $ map (\x ->
520 let px = freq ! x
521 bx = relevantBranches x branches
522 -- | periods containing x
523 periods = nub $ map _phylo_groupPeriod $ filter (\g -> elem x $ g ^. phylo_groupNgrams) $ concat bx
524 wks = sum $ map wk bx
525 in (px / pys) * (sum $ map (\bk -> ((wk bk) / wks) * (accuracy x periods bk)) bx))
526 $ keys freq
527 where
528 pys :: Double
529 pys = sum (elems freq)
530
531
532 {-
533 -- compute the quality score F(λ)
534 -}
535 toPhyloQuality :: Double -> Double -> Map Int Double -> [[PhyloGroup]] -> Double
536 toPhyloQuality fdt lambda freq branches =
537 if (null branches)
538 then 0
539 else sum
540 $ map (\x ->
541 -- let px = freq ! x
542 let bx = relevantBranches x branches
543 -- | periods containing x
544 periods = nub $ map _phylo_groupPeriod $ filter (\g -> elem x $ g ^. phylo_groupNgrams) $ concat bx
545 wks = sum $ map wk bx
546 -- in (px / pys) * (sum $ map (\bk -> ((wk bk) / wks) * (fScore beta x bk bx)) bx))
547 -- in (1 / fdt) * (sum $ map (\bk -> ((wk bk) / wks) * (fScore beta x periods bk bx)) bx))
548 in (1 / fdt) * (sum $ map (\bk -> ((wk bk) / wks) * (fScore (tan (lambda * pi / 2)) x periods bk bx)) bx))
549 $ keys freq
550 -- where
551 -- pys :: Double
552 -- pys = sum (elems freq)
553
554
555 -------------------------
556 -- | Sea-level Rise | --
557 -------------------------
558
559
560 {-
561 -- attach a rise value to branches & groups metadata
562 -}
563 riseToMeta :: Double -> [Branch] -> [Branch]
564 riseToMeta rise branches =
565 let break = length branches > 1
566 in map (\b ->
567 map (\g ->
568 if break then g & phylo_groupMeta .~ (adjust (\lst -> lst ++ [rise]) "breaks"(g ^. phylo_groupMeta))
569 else g) b) branches
570
571
572 {-
573 -- attach a thr value to branches & groups metadata
574 -}
575 thrToMeta :: Double -> [Branch] -> [Branch]
576 thrToMeta thr branches =
577 map (\b ->
578 map (\g -> g & phylo_groupMeta .~ (adjust (\lst -> lst ++ [thr]) "seaLevels" (g ^. phylo_groupMeta))) b) branches
579
580
581 {-
582 -- TODO
583 -- 1) try the zipper structure https://wiki.haskell.org/Zipper to performe the sea-level rise algorithme
584 -- 2) investigate how the branches order influences the 'separateBranches' function
585 -}
586
587
588 {-
589 -- sequentially separate each branch for a given threshold and check if it locally increases the quality score
590 -- sequence = [done] | currentBranch | [rest]
591 -- done = all the already separated branches
592 -- rest = all the branches we still have to separate
593 -}
594 separateBranches :: Double -> PhyloSimilarity -> Double -> Map Int Double -> Int -> Double -> Double
595 -> Int -> Map Date Double -> Map Date Cooc -> Map Int [PhyloGroupId] -> [Period]
596 -> [(Branch,ShouldTry)] -> (Branch,ShouldTry) -> [(Branch,ShouldTry)]
597 -> [(Branch,ShouldTry)]
598 separateBranches fdt similarity lambda frequency minBranch thr rise timescale docs coocs roots periods done currentBranch rest =
599 let done' = done ++ (if snd currentBranch
600 then
601 (if ((null (fst branches')) || (quality > quality'))
602 ---- 5) if the quality is not increased by the new branches or if the new branches are all small
603 ---- then undo the separation and localy stop the sea rise
604 ---- else validate the separation and authorise next sea rise in the long new branches
605 then
606 -- trace (" ✗ F(λ) = " <> show(quality) <> " (vs) " <> show(quality')
607 -- <> " | " <> show(length $ fst ego) <> " groups : "
608 -- <> " |✓ " <> show(length $ fst ego') <> show(map length $ fst ego')
609 -- <> " |✗ " <> show(length $ snd ego') <> "[" <> show(length $ concat $ snd ego') <> "]")
610 [(fst currentBranch,False)]
611 else
612 -- trace (" ✓ F(λ) = " <> show(quality) <> " (vs) " <> show(quality')
613 -- <> " | " <> show(length $ fst ego) <> " groups : "
614 -- <> " |✓ " <> show(length $ fst ego') <> show(map length $ fst ego')
615 -- <> " |✗ " <> show(length $ snd ego') <> "[" <> show(length $ concat $ snd ego') <> "]")
616 ((map (\e -> (e,True)) (fst branches')) ++ (map (\e -> (e,False)) (snd branches'))))
617 else [currentBranch])
618 in
619 -- 6) if there is no more branch to separate tne return [done'] else continue with [rest]
620 if null rest
621 then done'
622 else separateBranches fdt similarity lambda frequency minBranch thr rise timescale docs coocs roots periods
623 done' (List.head rest) (List.tail rest)
624 where
625 ------- 1) compute the quality before splitting any branch
626 quality :: LocalQuality
627 quality = toPhyloQuality fdt lambda frequency ((map fst done) ++ [fst currentBranch] ++ (map fst rest))
628
629 ------------------- 2) split the current branch and create a new phylomemetic network
630 phylomemeticNetwork :: [Branch]
631 phylomemeticNetwork = toPhylomemeticNetwork timescale periods similarity thr docs coocs roots (fst currentBranch)
632
633 --------- 3) change the new phylomemetic network into a tuple of new branches
634 --------- on the left : the long branches, on the right : the small ones
635 branches' :: ([Branch],[Branch])
636 branches' = partition (\b -> (length $ nub $ map _phylo_groupPeriod b) >= minBranch)
637 $ thrToMeta thr
638 $ riseToMeta rise phylomemeticNetwork
639
640 -------- 4) compute again the quality by considering the new branches
641 quality' :: LocalQuality
642 quality' = toPhyloQuality fdt lambda frequency
643 ((map fst done) ++ (fst branches') ++ (snd branches') ++ (map fst rest))
644
645
646 {-
647 -- perform the sea-level rise algorithm, browse the similarity ladder and check that we can try out the next step
648 -}
649 seaLevelRise :: Double -> PhyloSimilarity -> Double -> Int -> Map Int Double
650 -> [Double] -> Double
651 -> Int -> [Period]
652 -> Map Date Double -> Map Date Cooc
653 -> Map Int [PhyloGroupId]
654 -> [(Branch,ShouldTry)]
655 -> ([(Branch,ShouldTry)],FinalQuality)
656 seaLevelRise fdt similarity lambda minBranch frequency ladder rise frame periods docs coocs roots branches =
657 -- if the ladder is empty or thr > 1 or there is no branch to break then stop
658 if (null ladder) || ((List.head ladder) > 1) || (stopRise branches)
659 then (branches, toPhyloQuality fdt lambda frequency (map fst branches))
660 else
661 -- start breaking up all the possible branches for the current similarity threshold
662 let thr = List.head ladder
663 branches' = trace ("threshold = " <> printf "%.3f" thr
664 <> " F(λ) = " <> printf "%.5f" (toPhyloQuality fdt lambda frequency (map fst branches))
665 <> " ξ = " <> printf "%.5f" (globalAccuracy frequency (map fst branches))
666 <> " ρ = " <> printf "%.5f" (globalRecall frequency (map fst branches))
667 <> " branches = " <> show(length branches))
668 $ separateBranches fdt similarity lambda frequency minBranch thr rise frame docs coocs roots periods
669 [] (List.head branches) (List.tail branches)
670 in seaLevelRise fdt similarity lambda minBranch frequency (List.tail ladder) (rise + 1) frame periods docs coocs roots branches'
671 where
672 --------
673 stopRise :: [(Branch,ShouldTry)] -> Bool
674 stopRise bs = ((not . or) $ map snd bs)
675
676
677 {-
678 -- start the temporal matching process up, recover the resulting branches and update the groups (at scale 1) consequently
679 -}
680 temporalMatching :: [Double] -> Phylo -> Phylo
681 temporalMatching ladder phylo = updatePhyloGroups 1
682 (Map.fromList $ map (\g -> (getGroupId g,g)) $ traceMatchEnd $ concat branches)
683 (updateQuality quality phylo)
684 where
685 -------
686 quality :: FinalQuality
687 quality = snd sea
688
689 --------
690 branches :: [Branch]
691 branches = map fst $ fst sea
692
693 --- 2) process the temporal matching by elevating the similarity ladder
694 sea :: ([(Branch,ShouldTry)],FinalQuality)
695 sea = seaLevelRise (fromIntegral $ Vector.length $ getRoots phylo)
696 (similarity $ getConfig phylo)
697 (getLevel phylo)
698 (_qua_minBranch $ phyloQuality $ getConfig phylo)
699 (getRootsFreq phylo)
700 ladder 1
701 (getTimeFrame $ timeUnit $ getConfig phylo)
702 (getPeriodIds phylo)
703 (getDocsByDate phylo)
704 (getCoocByDate phylo)
705 ((phylo ^. phylo_foundations) ^. foundations_rootsInGroups)
706 (reverse $ sortOn (length . fst) seabed)
707
708 ------ 1) for each group, process an initial temporal Matching and create a 'seabed'
709 ------ ShouldTry determines if you should apply the seaLevelRise function again within each branch
710 seabed :: [(Branch,ShouldTry)]
711 seabed = map (\b -> (b,(length $ nub $ map _phylo_groupPeriod b) >= (_qua_minBranch $ phyloQuality $ getConfig phylo)))
712 $ toPhylomemeticNetwork (getTimeFrame $ timeUnit $ getConfig phylo)
713 (getPeriodIds phylo)
714 (similarity $ getConfig phylo)
715 (List.head ladder)
716 (getDocsByDate phylo)
717 (getCoocByDate phylo)
718 ((phylo ^. phylo_foundations) ^. foundations_rootsInGroups)
719 (traceTemporalMatching $ getGroupsFromScale 1 phylo)