]> Git — Sourcephile - gargantext.git/blob - src/Gargantext/Text.hs
[GRAPH] Distances fun with Accelerate (linear algebra in practice) (WIP)
[gargantext.git] / src / Gargantext / Text.hs
1 {-|
2 Module : Gargantext.Text
3 Description : Ngrams tools
4 Copyright : (c) CNRS, 2018
5 License : AGPL + CECILL v3
6 Maintainer : team@gargantext.org
7 Stability : experimental
8 Portability : POSIX
9
10 Text gathers terms in unit of contexts.
11
12 -}
13
14
15 module Gargantext.Text
16 where
17
18 import Data.Text (Text, split)
19 import Gargantext.Prelude hiding (filter)
20 import NLP.FullStop (segment)
21 import qualified Data.Text as DT
22
23 -----------------------------------------------------------------
24
25 class HasText h
26 where
27 hasText :: h -> [Text]
28
29 -----------------------------------------------------------------
30 -- French words to distinguish contexts
31 newtype Texte = Texte Text
32 newtype Paragraphe = Paragraphe Text
33 newtype Phrase = Phrase Text
34 newtype MultiTerme = MultiTerme Text
35 newtype Mot = Mot Text
36 newtype Lettre = Lettre Text
37
38 -- | Type syn seems obvious
39 type Titre = Phrase
40
41 -----------------------------------------------------------------
42
43 instance Show Texte where
44 show (Texte t) = show t
45
46 instance Show Paragraphe where
47 show (Paragraphe p) = show p
48
49 instance Show Phrase where
50 show (Phrase p) = show p
51
52 instance Show MultiTerme where
53 show (MultiTerme mt) = show mt
54
55 instance Show Mot where
56 show (Mot t) = show t
57
58 instance Show Lettre where
59 show (Lettre l) = show l
60
61 -----------------------------------------------------------------
62
63 class Collage sup inf where
64 dec :: sup -> [inf]
65 inc :: [inf] -> sup
66
67 instance Collage Texte Paragraphe where
68 dec (Texte t) = map Paragraphe $ DT.splitOn "\n" t
69 inc = Texte . DT.intercalate "\n" . map (\(Paragraphe t) -> t)
70
71 instance Collage Paragraphe Phrase where
72 dec (Paragraphe t) = map Phrase $ sentences t
73 inc = Paragraphe . DT.unwords . map (\(Phrase p) -> p)
74
75 instance Collage Phrase MultiTerme where
76 dec (Phrase t) = map MultiTerme $ DT.words t
77 inc = Phrase . DT.unwords . map (\(MultiTerme p) -> p)
78
79 instance Collage MultiTerme Mot where
80 dec (MultiTerme mt) = map Mot $ DT.words mt
81 inc = MultiTerme . DT.intercalate " " . map (\(Mot m) -> m)
82
83 -------------------------------------------------------------------
84 -- Contexts of text
85 sentences :: Text -> [Text]
86 sentences txt = map DT.pack $ segment $ DT.unpack txt
87
88 sentences' :: Text -> [Text]
89 sentences' txt = split isCharStop txt
90
91 isCharStop :: Char -> Bool
92 isCharStop c = c `elem` ['.','?','!']
93
94 unsentences :: [Text] -> Text
95 unsentences txts = DT.intercalate " " txts
96
97 -- | https://en.wikipedia.org/wiki/Text_mining
98 testText_en :: Text
99 testText_en = DT.pack "Text mining, also referred to as text data mining, roughly equivalent to text analytics, is the process of deriving high-quality information from text. High-quality information is typically derived through the devising of patterns and trends through means such as statistical pattern learning. Text mining usually involves the process of structuring the input text (usually parsing, along with the addition of some derived linguistic features and the removal of others, and subsequent insertion into a database), deriving patterns within the structured data, and finally evaluation and interpretation of the output. 'High quality' in text mining usually refers to some combination of relevance, novelty, and interestingness. Typical text mining tasks include text categorization, text clustering, concept/entity extraction, production of granular taxonomies, sentiment analysis, document summarization, and entity relation modeling (i.e., learning relations between named entities). Text analysis involves information retrieval, lexical analysis to study word frequency distributions, pattern recognition, tagging/annotation, information extraction, data mining techniques including link and association analysis, visualization, and predictive analytics. The overarching goal is, essentially, to turn text into data for analysis, via application of natural language processing (NLP) and analytical methods. A typical application is to scan a set of documents written in a natural language and either model the document set for predictive classification purposes or populate a database or search index with the information extracted."
100
101
102 testText_en_2 :: Text
103 testText_en_2 = DT.pack "It is hard to detect important articles in a specific context. Information retrieval techniques based on full text search can be inaccurate to identify main topics and they are not able to provide an indication about the importance of the article. Generating a citation network is a good way to find most popular articles but this approach is not context aware. The text around a citation mark is generally a good summary of the referred article. So citation context analysis presents an opportunity to use the wisdom of crowd for detecting important articles in a context sensitive way. In this work, we analyze citation contexts to rank articles properly for a given topic. The model proposed uses citation contexts in order to create a directed and edge-labeled citation network based on the target topic. Then we apply common ranking algorithms in order to find important articles in this newly created network. We showed that this method successfully detects a good subset of most prominent articles in a given topic. The biggest contribution of this approach is that we are able to identify important articles for a given search term even though these articles do not contain this search term. This technique can be used in other linked documents including web pages, legal documents, and patents as well as scientific papers."
104
105
106 -- | https://fr.wikipedia.org/wiki/Fouille_de_textes
107 testText_fr :: Text
108 testText_fr = DT.pack "La fouille de textes ou « l'extraction de connaissances » dans les textes est une spécialisation de la fouille de données et fait partie du domaine de l'intelligence artificielle. Cette technique est souvent désignée sous l'anglicisme text mining. Elle désigne un ensemble de traitements informatiques consistant à extraire des connaissances selon un critère de nouveauté ou de similarité dans des textes produits par des humains pour des humains. Dans la pratique, cela revient à mettre en algorithme un modèle simplifié des théories linguistiques dans des systèmes informatiques d'apprentissage et de statistiques. Les disciplines impliquées sont donc la linguistique calculatoire, l'ingénierie des langues, l'apprentissage artificiel, les statistiques et l'informatique."
109
110 termTests :: Text
111 termTests = "It is hard to detect important articles in a specific context. Information retrieval techniques based on full text search can be inaccurate to identify main topics and they are not able to provide an indication about the importance of the article. Generating a citation network is a good way to find most popular articles but this approach is not context aware. The text around a citation mark is generally a good summary of the referred article. So citation context analysis presents an opportunity to use the wisdom of crowd for detecting important articles in a context sensitive way. In this work, we analyze citation contexts to rank articles properly for a given topic. The model proposed uses citation contexts in order to create a directed and edge-labeled citation network based on the target topic. Then we apply common ranking algorithms in order to find important articles in this newly created network. We showed that this method successfully detects a good subset of most prominent articles in a given topic. The biggest contribution of this approach is that we are able to identify important articles for a given search term even though these articles do not contain this search term. This technique can be used in other linked documents including web pages, legal documents, and patents as well as scientific papers."
112
113
114 -- | Ngrams Test
115 -- >> ngramsTest testText
116 -- 248
117 --ngramsTest :: Text -> Int
118 --ngramsTest x = length ws
119 -- where
120 -- --txt = concat <$> lines <$> clean <$> readFile filePath
121 -- txt = clean x
122 -- -- | Number of sentences
123 -- --ls = sentences $ txt
124 -- -- | Number of monograms used in the full text
125 -- ws = ngrams $ txt
126 -- -- | stem ngrams
127 -- TODO
128 -- group ngrams
129 --ocs = occ $ ws
130