]> Git — Sourcephile - gargantext.git/blob - src/Gargantext/Viz/Graph/Distances/Matrice.hs
[GRAPH] Distances fun with Accelerate (linear algebra in practice) (WIP)
[gargantext.git] / src / Gargantext / Viz / Graph / Distances / Matrice.hs
1 {-|
2 Module : Gargantext.Graph.Distances.Matrix
3 Description :
4 Copyright : (c) CNRS, 2017-Present
5 License : AGPL + CECILL v3
6 Maintainer : team@gargantext.org
7 Stability : experimental
8 Portability : POSIX
9
10 This module aims at implementig distances of terms context by context is
11 the same referential of corpus.
12
13
14 Implementation use Accelerate library which enables GPU and CPU computation:
15
16 * Manuel M. T. Chakravarty, Gabriele Keller, Sean Lee, Trevor L. McDonell, and Vinod Grover.
17 [Accelerating Haskell Array Codes with Multicore GPUs][CKLM+11].
18 In _DAMP '11: Declarative Aspects of Multicore Programming_, ACM, 2011.
19
20 * Trevor L. McDonell, Manuel M. T. Chakravarty, Vinod Grover, and Ryan R. Newton.
21 [Type-safe Runtime Code Generation: Accelerate to LLVM][MCGN15].
22 In _Haskell '15: The 8th ACM SIGPLAN Symposium on Haskell_, ACM, 2015.
23
24 -}
25
26 {-# LANGUAGE TypeFamilies #-}
27 {-# LANGUAGE TypeOperators #-}
28 {-# LANGUAGE ScopedTypeVariables #-}
29 {-# LANGUAGE ViewPatterns #-}
30
31 module Gargantext.Viz.Graph.Distances.Matrice
32 where
33
34 import Debug.Trace (trace)
35 import Data.Array.Accelerate
36 import Data.Array.Accelerate.Interpreter (run)
37 import qualified Gargantext.Prelude as P
38
39
40 -----------------------------------------------------------------------
41 -- | Define a vector
42 --
43 -- >>> vector 3
44 -- Vector (Z :. 3) [0,1,2]
45 vector :: Elt c => Int -> [c] -> (Array (Z :. Int) c)
46 vector n l = fromList (Z :. n) l
47
48 -- | Define a matrix
49 --
50 -- >>> matrix 3 ([1..] :: [Double])
51 -- Matrix (Z :. 3 :. 3)
52 -- [ 1.0, 2.0, 3.0,
53 -- 4.0, 5.0, 6.0,
54 -- 7.0, 8.0, 9.0]
55 matrix :: Elt c => Int -> [c] -> Matrix c
56 matrix n l = fromList (Z :. n :. n) l
57
58 -- | Two ways to get the rank (as documentation)
59 --
60 -- >>> rank (matrix 3 ([1..] :: [Int]))
61 -- 2
62 rank :: (Matrix a) -> Int
63 rank m = arrayRank $ arrayShape m
64
65 -----------------------------------------------------------------------
66 -- | Dimension of a square Matrix
67 -- How to force use with SquareMatrix ?
68 type Dim = Int
69
70 -- | Get Dimension of a square Matrix
71 --
72 -- >>> dim (matrix 3 ([1..] :: [Int]))
73 -- 3
74 dim :: Matrix a -> Dim
75 dim m = n
76 where
77 Z :. _ :. n = arrayShape m
78 -- indexTail (arrayShape m)
79
80 -----------------------------------------------------------------------
81 -- TODO move to Utils
82 runExp :: Elt e => Exp e -> e
83 runExp e = indexArray (run (unit e)) Z
84 -----------------------------------------------------------------------
85
86 -- | Sum of a Matrix by Column
87 --
88 -- >>> run $ matSumCol 3 (use $ matrix 3 [1..])
89 -- Matrix (Z :. 3 :. 3)
90 -- [ 12.0, 15.0, 18.0,
91 -- 12.0, 15.0, 18.0,
92 -- 12.0, 15.0, 18.0]
93 matSumCol :: Dim -> Acc (Matrix Double) -> Acc (Matrix Double)
94 matSumCol r mat = replicate (constant (Z :. (r :: Int) :. All)) $ sum $ transpose mat
95
96 matSumCol' :: Matrix Double -> Matrix Double
97 matSumCol' m = run $ matSumCol n m'
98 where
99 n = dim m
100 m' = use m
101
102
103 -- | Proba computes de probability matrix: all cells divided by thee sum of its column
104 -- if you need get the probability on the lines, just transpose it
105 --
106 -- >>> run $ matProba 3 (use $ matrix 3 [1..])
107 -- Matrix (Z :. 3 :. 3)
108 -- [ 8.333333333333333e-2, 0.13333333333333333, 0.16666666666666666,
109 -- 0.3333333333333333, 0.3333333333333333, 0.3333333333333333,
110 -- 0.5833333333333334, 0.5333333333333333, 0.5]
111 matProba :: Dim -> Acc (Matrix Double) -> Acc (Matrix Double)
112 matProba r mat = zipWith (/) mat (matSumCol r mat)
113
114 -- | Diagonal of the matrix
115 --
116 -- >>> run $ diag (use $ matrix 3 ([1..] :: [Int]))
117 -- Vector (Z :. 3) [1,5,9]
118 diag :: Elt e => Acc (Matrix e) -> Acc (Vector e)
119 diag m = backpermute (indexTail (shape m))
120 (lift1 (\(Z :. x) -> (Z :. x :. (x :: Exp Int))))
121 m
122
123 -- | Divide by the Diagonal of the matrix
124 --
125 -- >>> run $ divByDiag 3 (use $ matrix 3 ([1..] :: [Double]))
126 -- Matrix (Z :. 3 :. 3)
127 -- [ 1.0, 0.4, 0.3333333333333333,
128 -- 4.0, 1.0, 0.6666666666666666,
129 -- 7.0, 1.6, 1.0]
130 divByDiag :: Dim -> Acc (Matrix Double) -> Acc (Matrix Double)
131 divByDiag d mat = zipWith (/) mat (replicate (constant (Z :. (d :: Int) :. All)) $ diag mat)
132
133 -----------------------------------------------------------------------
134 -- | Filters the matrix with the minimum of maximums
135 --
136 -- >>> run $ matMiniMax $ use $ matrix 3 [1..]
137 -- Matrix (Z :. 3 :. 3)
138 -- [ 0.0, 4.0, 7.0,
139 -- 0.0, 5.0, 8.0,
140 -- 0.0, 6.0, 9.0]
141 matMiniMax :: Acc (Matrix Double) -> Acc (Matrix Double)
142 matMiniMax m = map (\x -> ifThenElse (x > miniMax') x 0) (transpose m)
143 where
144 miniMax' = (the $ minimum $ maximum m)
145
146 -- | Filters the matrix with a constant
147 --
148 -- >>> run $ matFilter 5 $ use $ matrix 3 [1..]
149 -- Matrix (Z :. 3 :. 3)
150 -- [ 0.0, 0.0, 7.0,
151 -- 0.0, 0.0, 8.0,
152 -- 0.0, 6.0, 9.0]
153 filter' :: Double -> Acc (Matrix Double) -> Acc (Matrix Double)
154 filter' t m = map (\x -> ifThenElse (x > (constant t)) x 0) (transpose m)
155
156 -----------------------------------------------------------------------
157 -- * Measures of proximity
158 -----------------------------------------------------------------------
159 -- ** Conditional distance
160
161 -- *** Conditional distance (basic)
162
163 -- | Conditional distance (basic version)
164 --
165 -- 2 main measures are actually implemented in order to compute the
166 -- proximity of two terms: conditional and distributional
167 --
168 -- Conditional measure is an absolute measure which reflects
169 -- interactions of 2 terms in the corpus.
170 measureConditional :: Matrix Int -> Matrix Double
171 --measureConditional m = run (matMiniMax $ matProba (dim m) $ map fromIntegral $ use m)
172 measureConditional m = run $ matProba (dim m)
173 $ map fromIntegral
174 $ use m
175
176
177 -- *** Conditional distance (advanced)
178
179 -- | Conditional distance (advanced version)
180 --
181 -- The conditional measure P(i|j) of 2 terms @i@ and @j@, also called
182 -- "confidence" , is the maximum probability between @i@ and @j@ to see
183 -- @i@ in the same context of @j@ knowing @j@.
184 --
185 -- If N(i) (resp. N(j)) is the number of occurrences of @i@ (resp. @j@)
186 -- in the corpus and _[n_{ij}\] the number of its occurrences we get:
187 --
188 -- \[P_c=max(\frac{n_i}{n_{ij}},\frac{n_j}{n_{ij}} )\]
189 conditional' :: Matrix Int -> (Matrix InclusionExclusion, Matrix SpecificityGenericity)
190 conditional' m = ( run $ ie $ map fromIntegral $ use m
191 , run $ sg $ map fromIntegral $ use m
192 )
193 where
194 ie :: Acc (Matrix Double) -> Acc (Matrix Double)
195 ie mat = map (\x -> x / (2*n-1)) $ zipWith (+) (xs mat) (ys mat)
196 sg :: Acc (Matrix Double) -> Acc (Matrix Double)
197 sg mat = map (\x -> x / (2*n-1)) $ zipWith (-) (xs mat) (ys mat)
198
199 n :: Exp Double
200 n = P.fromIntegral r
201
202 r :: Dim
203 r = dim m
204
205 xs :: Acc (Matrix Double) -> Acc (Matrix Double)
206 xs mat = zipWith (-) (matSumCol r $ matProba r mat) (matProba r mat)
207 ys :: Acc (Matrix Double) -> Acc (Matrix Double)
208 ys mat = zipWith (-) (matSumCol r $ transpose $ matProba r mat) (matProba r mat)
209
210 -----------------------------------------------------------------------
211 -- ** Distributional Distance
212
213 -- | Distributional Distance Measure
214 --
215 -- Distributional measure is a relative measure which depends on the
216 -- selected list, it represents structural equivalence of mutual information.
217 --
218 -- The distributional measure P(c) of @i@ and @j@ terms is: \[
219 -- S_{MI} = \frac {\sum_{k \neq i,j ; MI_{ik} >0}^{} \min(MI_{ik},
220 -- MI_{jk})}{\sum_{k \neq i,j ; MI_{ik}>0}^{}} \]
221 --
222 -- Mutual information
223 -- \[S_{MI}({i},{j}) = \log(\frac{C{ij}}{E{ij}})\]
224 --
225 -- Number of cooccurrences of @i@ and @j@ in the same context of text
226 -- \[C{ij}\]
227 --
228 -- The expected value of the cooccurrences @i@ and @j@ (given a map list of size @n@)
229 -- \[E_{ij}^{m} = \frac {S_{i} S_{j}} {N_{m}}\]
230 --
231 -- Total cooccurrences of term @i@ given a map list of size @m@
232 -- \[S_{i} = \sum_{j, j \neq i}^{m} S_{ij}\]
233 --
234 -- Total cooccurrences of terms given a map list of size @m@
235 -- \[N_{m} = \sum_{i,i \neq i}^{m} \sum_{j, j \neq j}^{m} S_{ij}\]
236 --
237 distributional :: Matrix Int -> Matrix Double
238 distributional m = run -- $ matMiniMax
239 -- $ ri
240 -- $ myMin
241 $ filter' 0
242 $ s_mi
243 $ map fromIntegral -- ^ from Int to Double
244 $ use m -- ^ push matrix in Accelerate type
245 where
246 -- filter m = zipWith (\a b -> max a b) m (transpose m)
247
248 ri :: Acc (Matrix Double) -> Acc (Matrix Double)
249 ri mat = mat1 -- zipWith (/) mat1 mat2
250 where
251 mat1 = matSumCol n $ zipWith min' (myMin mat) (myMin $ transpose mat)
252 mat2 = total mat
253
254 myMin :: Acc (Matrix Double) -> Acc (Matrix Double)
255 myMin = replicate (constant (Z :. n :. All)) . minimum
256
257
258 -- TODO fix NaN
259 -- Quali TEST: OK
260 s_mi :: Acc (Matrix Double) -> Acc (Matrix Double)
261 s_mi m' = zipWith (\x y -> log (x / y)) (diagNull n m')
262 $ zipWith (/) (crossProduct n m') (total m')
263 -- crossProduct n m'
264
265
266 total :: Acc (Matrix Double) -> Acc (Matrix Double)
267 total = replicate (constant (Z :. n :. n)) . sum . sum
268
269 n :: Dim
270 n = dim m
271
272 -- run $ (identityMatrix (DAA.constant (10::Int)) :: DAA.Acc (DAA.Matrix Int)) Matrix (Z :. 10 :. 10)
273 identityMatrix :: Num a => Exp Int -> Acc (Matrix a)
274 identityMatrix n =
275 let zeros = fill (index2 n n) 0
276 ones = fill (index1 n) 1
277 in
278 permute const zeros (\(unindex1 -> i) -> index2 i i) ones
279
280
281 eyeMatrix :: Num a => Dim -> Acc (Matrix a) -> Acc (Matrix a)
282 eyeMatrix n' m =
283 let ones = fill (index2 n n) 1
284 zeros = fill (index1 n) 0
285 n = constant n'
286 in
287 permute const ones (\(unindex1 -> i) -> index2 i i) zeros
288
289
290 selfMatrix :: Num a => Dim -> Acc (Matrix a) -> Acc (Matrix a)
291 selfMatrix n' m =
292 let zeros = fill (index2 n n) 0
293 ones = fill (index2 n n) 1
294 n = constant n'
295 in
296 permute const ones ( lift1 ( \(Z :. (i :: Exp Int) :. (j:: Exp Int))
297 -> -- ifThenElse (i /= j)
298 -- (Z :. i :. j)
299 (Z :. i :. i)
300 )) zeros
301
302
303 selfMatrix' m' = run $ selfMatrix n m
304 where
305 n = dim m'
306 m = use m'
307
308 -------------------------------------------------
309 diagNull :: Num a => Dim -> Acc (Matrix a) -> Acc (Matrix a)
310 diagNull n m = zipWith (*) m eye
311 where
312 eye = eyeMatrix n m
313
314
315 -------------------------------------------------
316 crossProduct :: Dim -> Acc (Matrix Double) -> Acc (Matrix Double)
317 crossProduct n m = trace (P.show (run m',run m'')) $ zipWith (*) m' m''
318 where
319 m' = cross n m
320 m'' = cross n (transpose m)
321
322 crossT :: Matrix Double -> Matrix Double
323 crossT = run . transpose . use
324
325 crossProduct' :: Matrix Double -> Matrix Double
326 crossProduct' m = run $ crossProduct n m'
327 where
328 n = dim m
329 m' = use m
330
331 runWith :: (Arrays c, Elt a1)
332 => (Dim -> Acc (Matrix a1) -> a2 -> Acc c)
333 -> Matrix a1
334 -> a2
335 -> c
336 runWith f m = run . f (dim m) (use m)
337
338 -- | cross
339 cross :: Dim -> Acc (Matrix Double) -> Acc (Matrix Double)
340 cross n mat = diagNull n (matSumCol n $ diagNull n mat)
341
342 cross' :: Matrix Double -> Matrix Double
343 cross' mat = run $ cross n mat'
344 where
345 mat' = use mat
346 n = dim mat
347
348
349 -----------------------------------------------------------------------
350 -----------------------------------------------------------------------
351 -- * Specificity and Genericity
352
353 {- | Metric Specificity and genericity: select terms
354
355 - let N termes and occurrences of i \[N{i}\]
356
357 - Cooccurrences of i and j \[N{ij}\]
358 - Probability to get i given j : \[P(i|j)=N{ij}/N{j}\]
359
360 - Genericity of i \[Gen(i) = \frac{\sum_{j \neq i,j} P(i|j)}{N-1}\]
361 - Specificity of j \[Spec(i) = \frac{\sum_{j \neq i,j} P(j|i)}{N-1}\]
362
363 - \[Inclusion (i) = Gen(i) + Spec(i)\)
364 - \[GenericityScore = Gen(i)- Spec(i)\]
365
366 - References: Science mapping with asymmetrical paradigmatic proximity
367 Jean-Philippe Cointet (CREA, TSV), David Chavalarias (CREA) (Submitted
368 on 15 Mar 2008), Networks and Heterogeneous Media 3, 2 (2008) 267 - 276,
369 arXiv:0803.2315 [cs.OH]
370 -}
371 type InclusionExclusion = Double
372 type SpecificityGenericity = Double
373
374 data SquareMatrix = SymetricMatrix | NonSymetricMatrix
375 type SymetricMatrix = Matrix
376 type NonSymetricMatrix = Matrix
377
378
379 incExcSpeGen :: Matrix Int -> (Vector InclusionExclusion, Vector SpecificityGenericity)
380 incExcSpeGen m = (run' inclusionExclusion m, run' specificityGenericity m)
381 where
382 run' fun mat = run $ fun $ map fromIntegral $ use mat
383
384 -- | Inclusion (i) = Gen(i)+Spec(i)
385 inclusionExclusion :: Acc (Matrix Double) -> Acc (Vector Double)
386 inclusionExclusion mat = zipWith (+) (pV mat) (pV mat)
387
388 -- | Genericity score = Gen(i)- Spec(i)
389 specificityGenericity :: Acc (Matrix Double) -> Acc (Vector Double)
390 specificityGenericity mat = zipWith (+) (pH mat) (pH mat)
391
392 -- | Gen(i) : 1/(N-1)*Sum(j!=i, P(i|j)) : Genericity of i
393 pV :: Acc (Matrix Double) -> Acc (Vector Double)
394 pV mat = map (\x -> (x-1)/(cardN-1)) $ sum $ p_ij mat
395
396 -- | Spec(i) : 1/(N-1)*Sum(j!=i, P(j|i)) : Specificity of j
397 pH :: Acc (Matrix Double) -> Acc (Vector Double)
398 pH mat = map (\x -> (x-1)/(cardN-1)) $ sum $ p_ji mat
399
400 cardN :: Exp Double
401 cardN = constant (P.fromIntegral (dim m) :: Double)
402
403
404 -- | P(i|j) = Nij /N(jj) Probability to get i given j
405 --p_ij :: (Elt e, P.Fractional (Exp e)) => Acc (SymetricMatrix e) -> Acc (Matrix e)
406 p_ij :: (Elt e, P.Fractional (Exp e)) => Acc (Matrix e) -> Acc (Matrix e)
407 p_ij m = zipWith (/) m (n_jj m)
408 where
409 n_jj :: Elt e => Acc (SymetricMatrix e) -> Acc (Matrix e)
410 n_jj myMat' = backpermute (shape m)
411 (lift1 ( \(Z :. (_ :: Exp Int) :. (j:: Exp Int))
412 -> (Z :. j :. j)
413 )
414 ) myMat'
415
416 -- | P(j|i) = Nij /N(ii) Probability to get i given j
417 -- to test
418 p_ji :: (Elt e, P.Fractional (Exp e)) => Acc (Array DIM2 e) -> Acc (Array DIM2 e)
419 p_ji = transpose . p_ij
420
421
422 -- | Step to ckeck the result in visual/qualitative tests
423 incExcSpeGen_proba :: Matrix Int -> Matrix Double
424 incExcSpeGen_proba m = run' pro m
425 where
426 run' fun mat = run $ fun $ map fromIntegral $ use mat
427
428 pro mat = p_ji mat
429
430 {-
431 -- | Hypothesis to test maybe later (or not)
432 -- TODO ask accelerate for instances to ease such writtings:
433 p_ :: (Elt e, P.Fractional (Exp e)) => Acc (Array DIM2 e) -> Acc (Array DIM2 e)
434 p_ m = zipWith (/) m (n_ m)
435 where
436 n_ :: Elt e => Acc (SymetricMatrix e) -> Acc (Matrix e)
437 n_ m = backpermute (shape m)
438 (lift1 ( \(Z :. (i :: Exp Int) :. (j:: Exp Int))
439 -> (ifThenElse (i < j) (lift (Z :. j :. j)) (lift (Z :. i :. i)) :: Exp DIM2)
440 )
441 ) m
442 -}
443
444 -- * For Tests (to be removed)
445 -- | Test perfermance with this matrix
446 -- TODO : add this in a benchmark folder
447 distriTest :: Matrix Double
448 distriTest = distributional $ matrix 100 [1..]
449 -----------------------------------------------------------------------
450