2 Module : Gargantext.Graph.Distances.Matrix
4 Copyright : (c) CNRS, 2017-Present
5 License : AGPL + CECILL v3
6 Maintainer : team@gargantext.org
7 Stability : experimental
10 This module aims at implementig distances of terms context by context is
11 the same referential of corpus.
14 Implementation use Accelerate library which enables GPU and CPU computation:
16 * Manuel M. T. Chakravarty, Gabriele Keller, Sean Lee, Trevor L. McDonell, and Vinod Grover.
17 [Accelerating Haskell Array Codes with Multicore GPUs][CKLM+11].
18 In _DAMP '11: Declarative Aspects of Multicore Programming_, ACM, 2011.
20 * Trevor L. McDonell, Manuel M. T. Chakravarty, Vinod Grover, and Ryan R. Newton.
21 [Type-safe Runtime Code Generation: Accelerate to LLVM][MCGN15].
22 In _Haskell '15: The 8th ACM SIGPLAN Symposium on Haskell_, ACM, 2015.
26 {-# LANGUAGE TypeFamilies #-}
27 {-# LANGUAGE TypeOperators #-}
28 {-# LANGUAGE ScopedTypeVariables #-}
29 {-# LANGUAGE ViewPatterns #-}
31 module Gargantext.Viz.Graph.Distances.Matrice
34 import Debug.Trace (trace)
35 import Data.Array.Accelerate
36 import Data.Array.Accelerate.Interpreter (run)
37 import qualified Gargantext.Prelude as P
40 -----------------------------------------------------------------------
44 -- Vector (Z :. 3) [0,1,2]
45 vector :: Elt c => Int -> [c] -> (Array (Z :. Int) c)
46 vector n l = fromList (Z :. n) l
50 -- >>> matrix 3 ([1..] :: [Double])
51 -- Matrix (Z :. 3 :. 3)
55 matrix :: Elt c => Int -> [c] -> Matrix c
56 matrix n l = fromList (Z :. n :. n) l
58 -- | Two ways to get the rank (as documentation)
60 -- >>> rank (matrix 3 ([1..] :: [Int]))
62 rank :: (Matrix a) -> Int
63 rank m = arrayRank $ arrayShape m
65 -----------------------------------------------------------------------
66 -- | Dimension of a square Matrix
67 -- How to force use with SquareMatrix ?
70 -- | Get Dimension of a square Matrix
72 -- >>> dim (matrix 3 ([1..] :: [Int]))
74 dim :: Matrix a -> Dim
77 Z :. _ :. n = arrayShape m
78 -- indexTail (arrayShape m)
80 -----------------------------------------------------------------------
82 runExp :: Elt e => Exp e -> e
83 runExp e = indexArray (run (unit e)) Z
84 -----------------------------------------------------------------------
86 -- | Sum of a Matrix by Column
88 -- >>> run $ matSumCol 3 (use $ matrix 3 [1..])
89 -- Matrix (Z :. 3 :. 3)
90 -- [ 12.0, 15.0, 18.0,
93 matSumCol :: Dim -> Acc (Matrix Double) -> Acc (Matrix Double)
94 matSumCol r mat = replicate (constant (Z :. (r :: Int) :. All)) $ sum $ transpose mat
96 matSumCol' :: Matrix Double -> Matrix Double
97 matSumCol' m = run $ matSumCol n m'
103 -- | Proba computes de probability matrix: all cells divided by thee sum of its column
104 -- if you need get the probability on the lines, just transpose it
106 -- >>> run $ matProba 3 (use $ matrix 3 [1..])
107 -- Matrix (Z :. 3 :. 3)
108 -- [ 8.333333333333333e-2, 0.13333333333333333, 0.16666666666666666,
109 -- 0.3333333333333333, 0.3333333333333333, 0.3333333333333333,
110 -- 0.5833333333333334, 0.5333333333333333, 0.5]
111 matProba :: Dim -> Acc (Matrix Double) -> Acc (Matrix Double)
112 matProba r mat = zipWith (/) mat (matSumCol r mat)
114 -- | Diagonal of the matrix
116 -- >>> run $ diag (use $ matrix 3 ([1..] :: [Int]))
117 -- Vector (Z :. 3) [1,5,9]
118 diag :: Elt e => Acc (Matrix e) -> Acc (Vector e)
119 diag m = backpermute (indexTail (shape m))
120 (lift1 (\(Z :. x) -> (Z :. x :. (x :: Exp Int))))
123 -- | Divide by the Diagonal of the matrix
125 -- >>> run $ divByDiag 3 (use $ matrix 3 ([1..] :: [Double]))
126 -- Matrix (Z :. 3 :. 3)
127 -- [ 1.0, 0.4, 0.3333333333333333,
128 -- 4.0, 1.0, 0.6666666666666666,
130 divByDiag :: Dim -> Acc (Matrix Double) -> Acc (Matrix Double)
131 divByDiag d mat = zipWith (/) mat (replicate (constant (Z :. (d :: Int) :. All)) $ diag mat)
133 -----------------------------------------------------------------------
134 -- | Filters the matrix with the minimum of maximums
136 -- >>> run $ matMiniMax $ use $ matrix 3 [1..]
137 -- Matrix (Z :. 3 :. 3)
141 matMiniMax :: Acc (Matrix Double) -> Acc (Matrix Double)
142 matMiniMax m = map (\x -> ifThenElse (x > miniMax') x 0) (transpose m)
144 miniMax' = (the $ minimum $ maximum m)
146 -- | Filters the matrix with a constant
148 -- >>> run $ matFilter 5 $ use $ matrix 3 [1..]
149 -- Matrix (Z :. 3 :. 3)
153 filter' :: Double -> Acc (Matrix Double) -> Acc (Matrix Double)
154 filter' t m = map (\x -> ifThenElse (x > (constant t)) x 0) (transpose m)
156 -----------------------------------------------------------------------
157 -- * Measures of proximity
158 -----------------------------------------------------------------------
159 -- ** Conditional distance
161 -- *** Conditional distance (basic)
163 -- | Conditional distance (basic version)
165 -- 2 main measures are actually implemented in order to compute the
166 -- proximity of two terms: conditional and distributional
168 -- Conditional measure is an absolute measure which reflects
169 -- interactions of 2 terms in the corpus.
170 measureConditional :: Matrix Int -> Matrix Double
171 --measureConditional m = run (matMiniMax $ matProba (dim m) $ map fromIntegral $ use m)
172 measureConditional m = run $ matProba (dim m)
177 -- *** Conditional distance (advanced)
179 -- | Conditional distance (advanced version)
181 -- The conditional measure P(i|j) of 2 terms @i@ and @j@, also called
182 -- "confidence" , is the maximum probability between @i@ and @j@ to see
183 -- @i@ in the same context of @j@ knowing @j@.
185 -- If N(i) (resp. N(j)) is the number of occurrences of @i@ (resp. @j@)
186 -- in the corpus and _[n_{ij}\] the number of its occurrences we get:
188 -- \[P_c=max(\frac{n_i}{n_{ij}},\frac{n_j}{n_{ij}} )\]
189 conditional' :: Matrix Int -> (Matrix InclusionExclusion, Matrix SpecificityGenericity)
190 conditional' m = ( run $ ie $ map fromIntegral $ use m
191 , run $ sg $ map fromIntegral $ use m
194 ie :: Acc (Matrix Double) -> Acc (Matrix Double)
195 ie mat = map (\x -> x / (2*n-1)) $ zipWith (+) (xs mat) (ys mat)
196 sg :: Acc (Matrix Double) -> Acc (Matrix Double)
197 sg mat = map (\x -> x / (2*n-1)) $ zipWith (-) (xs mat) (ys mat)
205 xs :: Acc (Matrix Double) -> Acc (Matrix Double)
206 xs mat = zipWith (-) (matSumCol r $ matProba r mat) (matProba r mat)
207 ys :: Acc (Matrix Double) -> Acc (Matrix Double)
208 ys mat = zipWith (-) (matSumCol r $ transpose $ matProba r mat) (matProba r mat)
210 -----------------------------------------------------------------------
211 -- ** Distributional Distance
213 -- | Distributional Distance Measure
215 -- Distributional measure is a relative measure which depends on the
216 -- selected list, it represents structural equivalence of mutual information.
218 -- The distributional measure P(c) of @i@ and @j@ terms is: \[
219 -- S_{MI} = \frac {\sum_{k \neq i,j ; MI_{ik} >0}^{} \min(MI_{ik},
220 -- MI_{jk})}{\sum_{k \neq i,j ; MI_{ik}>0}^{}} \]
222 -- Mutual information
223 -- \[S_{MI}({i},{j}) = \log(\frac{C{ij}}{E{ij}})\]
225 -- Number of cooccurrences of @i@ and @j@ in the same context of text
228 -- The expected value of the cooccurrences @i@ and @j@ (given a map list of size @n@)
229 -- \[E_{ij}^{m} = \frac {S_{i} S_{j}} {N_{m}}\]
231 -- Total cooccurrences of term @i@ given a map list of size @m@
232 -- \[S_{i} = \sum_{j, j \neq i}^{m} S_{ij}\]
234 -- Total cooccurrences of terms given a map list of size @m@
235 -- \[N_{m} = \sum_{i,i \neq i}^{m} \sum_{j, j \neq j}^{m} S_{ij}\]
237 distributional :: Matrix Int -> Matrix Double
238 distributional m = run -- $ matMiniMax
243 $ map fromIntegral -- ^ from Int to Double
244 $ use m -- ^ push matrix in Accelerate type
246 -- filter m = zipWith (\a b -> max a b) m (transpose m)
248 ri :: Acc (Matrix Double) -> Acc (Matrix Double)
249 ri mat = mat1 -- zipWith (/) mat1 mat2
251 mat1 = matSumCol n $ zipWith min' (myMin mat) (myMin $ transpose mat)
254 myMin :: Acc (Matrix Double) -> Acc (Matrix Double)
255 myMin = replicate (constant (Z :. n :. All)) . minimum
260 s_mi :: Acc (Matrix Double) -> Acc (Matrix Double)
261 s_mi m' = zipWith (\x y -> log (x / y)) (diagNull n m')
262 $ zipWith (/) (crossProduct n m') (total m')
266 total :: Acc (Matrix Double) -> Acc (Matrix Double)
267 total = replicate (constant (Z :. n :. n)) . sum . sum
272 -- run $ (identityMatrix (DAA.constant (10::Int)) :: DAA.Acc (DAA.Matrix Int)) Matrix (Z :. 10 :. 10)
273 identityMatrix :: Num a => Exp Int -> Acc (Matrix a)
275 let zeros = fill (index2 n n) 0
276 ones = fill (index1 n) 1
278 permute const zeros (\(unindex1 -> i) -> index2 i i) ones
281 eyeMatrix :: Num a => Dim -> Acc (Matrix a) -> Acc (Matrix a)
283 let ones = fill (index2 n n) 1
284 zeros = fill (index1 n) 0
287 permute const ones (\(unindex1 -> i) -> index2 i i) zeros
290 selfMatrix :: Num a => Dim -> Acc (Matrix a) -> Acc (Matrix a)
292 let zeros = fill (index2 n n) 0
293 ones = fill (index2 n n) 1
296 permute const ones ( lift1 ( \(Z :. (i :: Exp Int) :. (j:: Exp Int))
297 -> -- ifThenElse (i /= j)
303 selfMatrix' m' = run $ selfMatrix n m
308 -------------------------------------------------
309 diagNull :: Num a => Dim -> Acc (Matrix a) -> Acc (Matrix a)
310 diagNull n m = zipWith (*) m eye
315 -------------------------------------------------
316 crossProduct :: Dim -> Acc (Matrix Double) -> Acc (Matrix Double)
317 crossProduct n m = trace (P.show (run m',run m'')) $ zipWith (*) m' m''
320 m'' = cross n (transpose m)
322 crossT :: Matrix Double -> Matrix Double
323 crossT = run . transpose . use
325 crossProduct' :: Matrix Double -> Matrix Double
326 crossProduct' m = run $ crossProduct n m'
331 runWith :: (Arrays c, Elt a1)
332 => (Dim -> Acc (Matrix a1) -> a2 -> Acc c)
336 runWith f m = run . f (dim m) (use m)
339 cross :: Dim -> Acc (Matrix Double) -> Acc (Matrix Double)
340 cross n mat = diagNull n (matSumCol n $ diagNull n mat)
342 cross' :: Matrix Double -> Matrix Double
343 cross' mat = run $ cross n mat'
349 -----------------------------------------------------------------------
350 -----------------------------------------------------------------------
351 -- * Specificity and Genericity
353 {- | Metric Specificity and genericity: select terms
355 - let N termes and occurrences of i \[N{i}\]
357 - Cooccurrences of i and j \[N{ij}\]
358 - Probability to get i given j : \[P(i|j)=N{ij}/N{j}\]
360 - Genericity of i \[Gen(i) = \frac{\sum_{j \neq i,j} P(i|j)}{N-1}\]
361 - Specificity of j \[Spec(i) = \frac{\sum_{j \neq i,j} P(j|i)}{N-1}\]
363 - \[Inclusion (i) = Gen(i) + Spec(i)\)
364 - \[GenericityScore = Gen(i)- Spec(i)\]
366 - References: Science mapping with asymmetrical paradigmatic proximity
367 Jean-Philippe Cointet (CREA, TSV), David Chavalarias (CREA) (Submitted
368 on 15 Mar 2008), Networks and Heterogeneous Media 3, 2 (2008) 267 - 276,
369 arXiv:0803.2315 [cs.OH]
371 type InclusionExclusion = Double
372 type SpecificityGenericity = Double
374 data SquareMatrix = SymetricMatrix | NonSymetricMatrix
375 type SymetricMatrix = Matrix
376 type NonSymetricMatrix = Matrix
379 incExcSpeGen :: Matrix Int -> (Vector InclusionExclusion, Vector SpecificityGenericity)
380 incExcSpeGen m = (run' inclusionExclusion m, run' specificityGenericity m)
382 run' fun mat = run $ fun $ map fromIntegral $ use mat
384 -- | Inclusion (i) = Gen(i)+Spec(i)
385 inclusionExclusion :: Acc (Matrix Double) -> Acc (Vector Double)
386 inclusionExclusion mat = zipWith (+) (pV mat) (pV mat)
388 -- | Genericity score = Gen(i)- Spec(i)
389 specificityGenericity :: Acc (Matrix Double) -> Acc (Vector Double)
390 specificityGenericity mat = zipWith (+) (pH mat) (pH mat)
392 -- | Gen(i) : 1/(N-1)*Sum(j!=i, P(i|j)) : Genericity of i
393 pV :: Acc (Matrix Double) -> Acc (Vector Double)
394 pV mat = map (\x -> (x-1)/(cardN-1)) $ sum $ p_ij mat
396 -- | Spec(i) : 1/(N-1)*Sum(j!=i, P(j|i)) : Specificity of j
397 pH :: Acc (Matrix Double) -> Acc (Vector Double)
398 pH mat = map (\x -> (x-1)/(cardN-1)) $ sum $ p_ji mat
401 cardN = constant (P.fromIntegral (dim m) :: Double)
404 -- | P(i|j) = Nij /N(jj) Probability to get i given j
405 --p_ij :: (Elt e, P.Fractional (Exp e)) => Acc (SymetricMatrix e) -> Acc (Matrix e)
406 p_ij :: (Elt e, P.Fractional (Exp e)) => Acc (Matrix e) -> Acc (Matrix e)
407 p_ij m = zipWith (/) m (n_jj m)
409 n_jj :: Elt e => Acc (SymetricMatrix e) -> Acc (Matrix e)
410 n_jj myMat' = backpermute (shape m)
411 (lift1 ( \(Z :. (_ :: Exp Int) :. (j:: Exp Int))
416 -- | P(j|i) = Nij /N(ii) Probability to get i given j
418 p_ji :: (Elt e, P.Fractional (Exp e)) => Acc (Array DIM2 e) -> Acc (Array DIM2 e)
419 p_ji = transpose . p_ij
422 -- | Step to ckeck the result in visual/qualitative tests
423 incExcSpeGen_proba :: Matrix Int -> Matrix Double
424 incExcSpeGen_proba m = run' pro m
426 run' fun mat = run $ fun $ map fromIntegral $ use mat
431 -- | Hypothesis to test maybe later (or not)
432 -- TODO ask accelerate for instances to ease such writtings:
433 p_ :: (Elt e, P.Fractional (Exp e)) => Acc (Array DIM2 e) -> Acc (Array DIM2 e)
434 p_ m = zipWith (/) m (n_ m)
436 n_ :: Elt e => Acc (SymetricMatrix e) -> Acc (Matrix e)
437 n_ m = backpermute (shape m)
438 (lift1 ( \(Z :. (i :: Exp Int) :. (j:: Exp Int))
439 -> (ifThenElse (i < j) (lift (Z :. j :. j)) (lift (Z :. i :. i)) :: Exp DIM2)
444 -- * For Tests (to be removed)
445 -- | Test perfermance with this matrix
446 -- TODO : add this in a benchmark folder
447 distriTest :: Matrix Double
448 distriTest = distributional $ matrix 100 [1..]
449 -----------------------------------------------------------------------