2 Module : Gargantext.Text.Eleve
3 Description : Unsupervized Word segmentation
4 Copyright : (c) CNRS, 2019-Present
5 License : AGPL + CECILL v3
6 Maintainer : team@gargantext.org
7 Stability : experimental
10 # Implementation of Unsupervized Word Segmentation
14 - Python implementation (Korantin August, Emmanuel Navarro):
15 [EleVe](https://github.com/kodexlab/eleve.git)
17 - Unsupervized Word Segmentation:the case for Mandarin Chinese Pierre
18 Magistry, Benoît Sagot, Alpage, INRIA & Univ. Paris 7, Proceedings of
19 the 50th Annual Meeting of the Association for Computational Linguistics
20 , pages 383–387. [PDF](https://www.aclweb.org/anthology/P12-2075)
22 Notes for current implementation:
23 - TODO fix normalization
24 - TODO extract longer ngrams (see paper above, viterbi algo can be used)
25 - TODO AD TEST: prop (Node c _e f) = c == Map.size f
27 - AD: Real ngrams extraction test
28 from Gargantext.Text.Terms import extractTermsUnsupervised
29 docs <- runCmdRepl $ selectDocs 1004
30 extractTermsUnsupervised 3 $ DT.intercalate " "
32 $ Gargantext.map _hyperdataDocument_abstract docs
35 {-# LANGUAGE ConstraintKinds #-}
36 {-# LANGUAGE NoImplicitPrelude #-}
37 {-# LANGUAGE OverloadedStrings #-}
38 {-# LANGUAGE RankNTypes #-}
39 {-# LANGUAGE TemplateHaskell #-}
40 {-# LANGUAGE TypeFamilies #-}
42 module Gargantext.Text.Eleve where
44 import Debug.Trace (trace)
45 -- import Debug.SimpleReflect
47 import Control.Lens (Lens', Getting, (^.), (^?), view, makeLenses, _Just)
48 import Control.Monad (forM_)
50 import qualified Data.List as L
52 import Data.Text (Text)
53 import qualified Data.Text as T
55 import Data.Maybe (fromMaybe)
56 import qualified Data.Map as Map
57 import Gargantext.Prelude hiding (cs)
58 import qualified Data.Tree as Tree
59 import Data.Tree (Tree)
60 import qualified Prelude as P (putStrLn, logBase, isNaN, RealFloat)
67 -- ^ TODO: only used for debugging
69 ------------------------------------------------------------------------
70 -- | Example and tests for development
76 instance Show e => Show (I e) where
77 show (I e n) = show (e, n)
81 type ModEntropy i o e = (e -> e) -> i -> o
83 set_autonomy :: ModEntropy e (I e) e
84 set_autonomy f e = I e (f e)
86 data StartStop = Start | Stop
87 deriving (Ord, Eq, Show)
89 data Token = NonTerminal Text
91 deriving (Ord, Eq, Show)
93 isTerminal :: Token -> Bool
94 isTerminal (Terminal _) = True
95 isTerminal (NonTerminal _) = False
97 parseToken :: Text -> Token
98 parseToken "<start>" = Terminal Start
99 parseToken "<stop>" = Terminal Stop
100 parseToken t = NonTerminal t
102 toToken :: [Text] -> [Token]
103 toToken xs = Terminal Start : (NonTerminal <$> xs) <> [Terminal Stop]
105 printToken :: Token -> Text
108 f (NonTerminal x) = x
109 f (Terminal Start) = "<start>"
110 f (Terminal Stop) = "<stop>"
112 ------------------------------------------------------------------------
115 = Node { _node_count :: Int
117 , _node_children :: Map k (Trie k e)
119 | Leaf { _node_count :: Int }
124 insertTries :: Ord k => [[k]] -> Trie k ()
125 insertTries = L.foldr insertTrie emptyTrie
127 insertTrie :: Ord k => [k] -> Trie k () -> Trie k ()
128 insertTrie [] n = n { _node_count = _node_count n +1}
129 insertTrie (x:xs) (Leaf c) = mkTrie (c+1) $ Map.singleton x $ insertTrie xs emptyTrie
130 insertTrie (x:xs) (Node c _e children) = mkTrie (c+1) $ Map.alter f x children
132 f = Just . insertTrie xs . fromMaybe emptyTrie
134 -- emptyTrie :: (Ord k, Monoid e) => Trie k e
135 -- emptyTrie = Node 0 mempty mempty
136 emptyTrie :: Trie k e
139 mkTrie :: Monoid e => Int -> Map k (Trie k e) -> Trie k e
141 | Map.null children = Leaf c
142 | otherwise = Node c mempty children
144 -----------------------------
146 -- | Trie to Tree since Tree as nice print function
147 toTree :: k -> Trie k e -> Tree (k,Int,Maybe e)
148 toTree k (Leaf c) = Tree.Node (k, c, Nothing) []
149 toTree k (Node c e cs) = Tree.Node (k, c, Just e) (map (uncurry toTree) $ Map.toList cs)
151 ------------------------------------------------------------------------
152 ------------------------------------------------------------------------
154 nan :: Floating e => e
157 noNaNs :: P.RealFloat e => [e] -> [e]
158 noNaNs = filter (not . P.isNaN)
160 updateIfDefined :: P.RealFloat e => e -> e -> e
161 updateIfDefined e0 e | P.isNaN e = e0
164 subst :: Entropy e => (e, e) -> e -> e
165 subst (src, dst) x | sim src x = dst
168 entropyTrie :: Entropy e => (k -> Bool) -> Trie k () -> Trie k e
169 entropyTrie _ (Leaf c) = Leaf c
170 entropyTrie pred (Node c () children) = Node c e (map (entropyTrie pred) children)
172 e = sum $ map f $ Map.toList children
173 f (k, child) = if pred k then chc * P.logBase 2 (fromIntegral c)
174 else - chc * P.logBase 2 chc
176 chc = fromIntegral (_node_count child) / fromIntegral c
177 ------------------------------------------------------------------------
179 normalizeLevel :: Entropy e => [e] -> e -> e
180 normalizeLevel = checkDiff (go . noNaNs)
183 -- checkDiff f es e = let e' = f es e in if e == e' then e' else trace ("normalizeLevel: diff " <> show e <> " " <> show e') e'
185 -- go [] = panic "normalizeLevel: impossible"
186 -- trace "normalizeLevel"
188 go es = \e -> (e - m) / v
191 then trace ("normalizeLevel " <> show (e,m,v,es))
201 nodeChildren :: Trie k e -> Map k (Trie k e)
202 nodeChildren (Node _ _ cs) = cs
203 nodeChildren (Leaf _) = Map.empty
207 data Ward = ForWard | BackWard
209 class IsTrie trie where
210 buildTrie :: Entropy e => (Int -> [[Text]] -> [[Token]]) -> Int -> [[Text]] -> trie Token e
211 nodeEntropy :: Entropy e => Getting e i e -> trie k i -> e
212 nodeChild :: Ord k => k -> trie k e -> trie k e
213 findTrie :: Ord k => [k] -> trie k e -> trie k e
214 normalizeEntropy :: Entropy e
215 => Getting e i e -> ModEntropy i o e
216 -> trie k i -> trie k o
219 --nodeAutonomy :: (Ord k, Entropy e) => Getting e i e -> trie k i -> [k] -> e
220 --nodeAutonomy inE t ks = nodeEntropy inE $ findTrie ks t
222 instance IsTrie Trie where
223 buildTrie to n ts = entropyTrie isTerminal $ insertTries $ to n ts
225 nodeEntropy inE (Node _ e _) = e ^. inE
226 nodeEntropy _ (Leaf _) = -- trace "nodeEntropy of Leaf" $
229 nodeChild k (Node _ _ cs) = fromMaybe emptyTrie (Map.lookup k cs)
230 nodeChild _ (Leaf _) = emptyTrie
232 findTrie ks t = L.foldl (flip nodeChild) t ks
234 normalizeEntropy inE modE t = go (modE identity) (entropyLevels inE t) t
236 go _ [] _ = panic "normalizeEntropy' empty levels"
237 go _ _ (Leaf c) = Leaf c
238 -- go _ ([] : _) _ = panic "normalizeEntropy': empty level"
239 go f (es : ess) (Node c i children)
240 -- | any (sim (i ^. inE)) es
241 = Node c (f i) $ go (modE $ normalizeLevel es) ess <$> children
243 -- = panic "NOT an elem"
247 This is only normalizing a node with respect to its brothers (unlike all the
248 nodes of the same level).
250 normalizeEntropy inE modE = go $ modE identity
252 go _ (Leaf c) = Leaf c
253 go f (Node c i children)
254 | Map.null children =
255 panic "normalizeEntropy: impossible"
257 Node c (f i) $ go (modE $ normalizeLevel es) <$> children
259 es = [ i' ^. inE | Node _ i' _ <- Map.elems children ]
261 ------------------------------------------------------------------------
263 levels :: Trie k e -> [[Trie k e]]
264 levels = L.takeWhile (not . L.null) . L.iterate (L.concatMap subForest) . pure
266 subForest :: Trie k e -> [Trie k e]
267 subForest (Leaf _) = []
268 subForest (Node _ _ children) = Map.elems children
270 entropyLevels :: Entropy e => Getting e i e -> Trie k i -> [[e]]
271 entropyLevels inE = fmap (noNaNs . map (nodeEntropy inE)) . levels
273 ------------------------------------------------------------------------
275 data Tries k e = Tries
282 toToken' :: Int -> [[Text]] -> [[Token]]
283 toToken' n input = L.concat $ (filter (/= [Terminal Stop]) . chunkAlongEleve (n + 2)) <$> toToken <$> input
285 instance IsTrie Tries where
286 buildTrie to n tts = Tries { _fwd = buildTrie to n tts
287 , _bwd = buildTrie to n (map reverse $ tts)
290 nodeEntropy inE (Tries fwd bwd) =
291 mean $ noNaNs [nodeEntropy inE fwd, nodeEntropy inE bwd]
293 findTrie ks (Tries fwd bwd) = Tries (findTrie ks fwd) (findTrie ks bwd)
295 -- TODO: here this is tempting to reverse but this is not always what we
296 -- want. See also nodeAutonomy.
298 nodeChild k (Tries fwd bwd) = Tries (nodeChild k fwd) (nodeChild k bwd)
300 normalizeEntropy inE modE = onTries (normalizeEntropy inE modE)
302 onTries :: (Trie k i -> Trie k o) -> Tries k i -> Tries k o
303 onTries f (Tries fwd bwd) = Tries (f fwd) (f bwd)
305 ------------------------------------------------------------------------
306 split :: (IsTrie trie, Entropy e) => Lens' i e -> trie Token i -> [Token] -> [[Token]]
308 split inE t0 (Terminal Start:xs0) = split inE (nodeChild (Terminal Start) t0) xs0
309 split inE t0 (x0:xs0) = go (nodeChild x0 t0) [x0] xs0
312 consRev xs xss = reverse xs : xss
314 go _ pref [] = [reverse pref]
315 go _ pref (Terminal Stop:_) = [reverse pref]
316 go t pref (Terminal Start:xs) = go t pref xs
318 -- trace (show (if acc then "ACC" else "CUT", (reverse (x : pref), ext), if acc then ">" else "<=", ((reverse pref, et), "+", ([x], ext0)))) $
320 then go xt (x:pref) xs
321 else consRev pref $ go xt0 [x] xs
326 -- ^ entropy of the current prefix
330 -- ^ entropy of the current prefix plus x
331 acc = ext > et + ext0
332 -- aut(["in","this","paper"]) > aut(["in","this"]) + aut(["paper"])
334 ne d t = if P.isNaN e then d else e
335 where e = nodeEntropy inE t
338 split :: Entropy e => Lens' i e -> Tries Token i -> [Token] -> [[Token]]
340 maximumWith (sum . map $ nodeAutonomy inE t0) (all the splits of ts)
343 ------------------------------------------------------------------------
344 ------------------------------------------------------------------------
346 mainEleve :: Int -> [[Text]] -> [[[Text]]]
349 mainEleve n input = map (map printToken) . split identity (t :: Trie Token Double) <$> inp
351 inp = toToken <$> input
352 t = buildTrie $ L.concat $ chunkAlong n 1 <$> inp
355 sim :: Entropy e => e -> e -> Bool
356 sim x y = x == y || (P.isNaN x && P.isNaN y)
358 chunkAlongEleve :: Int -> [a] -> [[a]]
359 chunkAlongEleve n xs = L.take n <$> L.tails xs
361 testEleve :: e ~ Double => Bool -> Int -> [Text] -> [(Text, Int, e, e, e, e, e)] -> IO Bool
362 testEleve debug n output checks = do
365 pss = [ (ps, findTrie ps fwd ^? _Just . node_entropy) -- . info_entropy)
368 , cs <- chunkAlong m 1 <$> inp
373 --res = map (map printToken) . split identity fwd <$> inp
374 --res = map (map printToken) . split info_norm_entropy' nt' <$> inp
375 res = map (map printToken) . split info_autonomy nt <$> inp
377 P.putStrLn (show input)
378 -- forM_ pss (P.putStrLn . show)
381 forM_ (entropyLevels identity (_fwd t)) $ \level ->
382 P.putStrLn $ " " <> show level
384 P.putStrLn "Forward:"
387 P.putStrLn "Backward:"
390 P.putStrLn "Splitting:"
391 P.putStrLn $ show res
393 pure $ expected == res
396 out = T.words <$> output
397 expected = fmap (T.splitOn "-") <$> out
398 input = (T.splitOn "-" =<<) <$> out
399 inp = toToken <$> input
400 t = buildTrie toToken' n input
401 -- nt = normalizeEntropy identity set_autonomy (fwd :: Trie Token Double)
402 -- nt = normalizeEntropy' info_entropy (\f -> info_norm_entropy' %~ f) nt
403 nt = normalizeEntropy identity set_autonomy t
407 then P.putStrLn $ " PASS " <> msg <> " " <> show ref
408 else P.putStrLn $ " FAIL " <> msg <> " ref=" <> show ref <> " my=" <> show my
410 checker (ngram, count, entropy, _ev, autonomy, bwd_entropy, fwd_entropy) = do
411 let ns = parseToken <$> T.words ngram
413 P.putStrLn $ " " <> T.unpack ngram <> ":"
414 check (==) "count" count (_node_count (_fwd t'))
415 check sim "entropy" entropy (nodeEntropy info_entropy t')
416 check sim "autonomy" autonomy (nodeEntropy info_autonomy t')
417 check sim "fwd_entropy" fwd_entropy (nodeEntropy info_entropy (_fwd t'))
418 check sim "bwd_entropy" bwd_entropy (nodeEntropy info_entropy (_bwd t'))
421 P.putStrLn . Tree.drawTree
423 . toTree (NonTerminal "")
425 -- | TODO real data is a list of tokenized sentences
426 example0, example1, example2, example3, example4, example5, example6 :: [Text]
427 example0 = ["New-York is New-York and New-York"]
428 example1 = ["to-be or not to-be"]
429 example2 = ["to-be-or not to-be-or NOT to-be and"]
430 example3 = example0 <> example0
431 -- > TEST: Should not have York New in the trie
432 example4 = ["a-b-c-d e a-b-c-d f"]
433 example5 = ["a-b-c-d-e f a-b-c-d-e g a-b-c-d-e"]
434 example6 = ["le-petit chat"
440 checks0, checks2 :: [(Text, Int, Double, Double, Double, Double, Double)]
443 [("<start>", 1, nan, nan, nan, nan, 0.0)
444 ,("New", 3, 0.792481250360578, -1.3208020839342969, 0.7499999999999999, 1.584962500721156, 0.0)
445 ,("York", 3, 0.792481250360578, -1.3208020839342969, 0.7499999999999999, 0.0, 1.584962500721156)
446 ,("is", 1, 0.0, -2.113283334294875, -0.5000000000000002, 0.0, 0.0)
447 ,("and", 1, 0.0, -2.113283334294875, -0.5000000000000002, 0.0, 0.0)
448 ,("<stop>", 0, nan, nan, nan, 0.0, nan)
451 ,("<start> New", 1, nan, nan, nan, nan, 0.0)
452 ,("New York", 3, 1.584962500721156, 1.584962500721156, 1.4142135623730951, nan, 1.584962500721156)
453 ,("York is", 1, 0.0, nan, nan, nan, 0.0)
454 ,("is New", 1, 0.0, nan, nan, nan, 0.0)
455 ,("York and", 1, 0.0, nan, nan, nan, 0.0)
456 ,("and New", 1, 0.0, nan, nan, nan, 0.0)
457 ,("York <stop>", 1, nan, nan, nan, nan, nan)
459 ,("<start> New York", 1, nan, nan, nan, nan, 0.0)
460 ,("New York is", 1, 0.0, nan, nan, nan, 0.0)
461 ,("York is New", 1, 0.0, nan, nan, nan, 0.0)
462 ,("is New York", 1, 0.0, nan, nan, nan, 0.0)
463 ,("New York and", 1, 0.0, nan, nan, nan, 0.0)
464 ,("York and New", 1, 0.0, nan, nan, nan, 0.0)
465 ,("and New York", 1, 0.0, nan, nan, nan, 0.0)
466 ,("New York <stop>", 1, nan, nan, nan, nan, nan)
473 [("to be", 3, 1.2516291673878228, 1.2516291673878228, 1.5535694744293167, nan, 0.9182958340544896)
474 ,("be or", 2, 0.5, nan, nan, nan, 1.0)
475 ,("or not", 1, 0.0, nan, nan, nan, 0.0)
476 ,("not to", 1, 0.0, nan, nan, nan, 0.0)
477 ,("or NOT", 1, 0.0, nan, nan, nan, 0.0)
478 ,("NOT to", 1, 0.0, nan, nan, nan, 0.0)
479 ,("be and", 1, 0.0, nan, nan, nan, 0.0)
486 [("example0", 2, example0, checks0)
487 ,("example1", 2, example1, [])
488 ,("example2", 3, example2, checks2)
489 ,("example3", 2, example3, [])
490 ,("example4", 4, example4, [])
491 ,("example5", 5, example5, [])
493 (\(name, n, ex, checks) -> do
494 P.putStrLn $ name <> " " <> show n
495 b <- testEleve False n ex checks
496 P.putStrLn $ " splitting: " <> if b then "PASS" else "FAIL"