]> Git — Sourcephile - haskell/mpms.git/blob - Main.hs
init
[haskell/mpms.git] / Main.hs
1 #!/usr/bin/env -S nix -L shell .#ghc --command runghc
2 -- #!/usr/bin/env -S nix -L shell .#ghc .#ghcid --command ghcid --test :main
3 -- SPDX-FileCopyrightText: 2022 Julien Mouyinho <julm+most-perfect-magic-squares@sourcephile.fr>
4 -- SPDX-License-Identifier: CC0-1.0
5 {-# OPTIONS_GHC -Wno-missing-signatures #-}
6 {-# LANGUAGE BlockArguments #-}
7 {-# LANGUAGE NoImplicitPrelude #-}
8 {-# LANGUAGE OverloadedStrings #-}
9 module Main where
10
11 -- import Blaze.ByteString.Builder (Builder)
12 import Data.ByteString qualified as BS
13 import Relude
14 import System.IO qualified as IO
15 import Text.Blaze
16 import qualified Text.Blaze.Html5 as H
17 import qualified Text.Blaze.Html5.Attributes as HA
18 import qualified Text.Blaze.Renderer.Utf8 as Blaze
19 import Data.List ((\\))
20 import Data.List qualified as List
21
22 data I = D | M | C | Y
23 deriving (Eq, Ord, Show)
24 data Cell = I I | H I
25 deriving (Eq, Ord, Show)
26
27 mpms4 :: a -> a -> a -> a -> a -> a -> a -> a -> [[a]]
28 mpms4 iD iM iC iY hD hM hC hY =
29 [ [iD, iM, iC, iY]
30 , [iC, iY, iD, iM]
31 , [hC, hY, hD, hM]
32 , [hD, hM, hC, hY]
33 ]
34
35 isValid :: [Cell] -> Bool
36 isValid [I D, I M, I C, I Y] = True
37 isValid [H D, H M, H C, H Y] = True
38 isValid [I a, I b, H aa, H bb] | a == aa && b == bb = True
39 isValid _ = False
40
41 squary :: [[((Integer, Integer), Cell)]]
42 squary =
43 zipWith (\r -> zipWith (\c -> ((r,c),)) [0..]) [0..] $
44 mpms4 (I D) (I M) (I C) (I Y) (H D) (H M) (H C) (H Y)
45 allPaths = combins 4 (concat squary)
46 validPaths = filter (isValid . sort . (snd <$>)) $ allPaths
47 validSortedPaths = sortBy (compare `on` (snd <$>)) validPaths
48 validSortedCoords = sort $ (fst <$>) <$> validPaths
49
50 mostPerfectMagicSquare4 :: Fractional a => a -> a -> a -> a -> [[a]]
51 mostPerfectMagicSquare4 d m c y = mpms4 d m c y (h d) (h m) (h c) (h y)
52 where h x = ((d + m + c + y) / 2) - x
53
54 square :: [[Int]]
55 square = (round @Rational <$>) <$> mostPerfectMagicSquare4 24 03 19 74
56
57 pathsByCombin :: [[[(Integer, Integer)]]]
58 pathsByCombin =
59 [ [ [ (0,c) | c <- [0..3] ] ]
60 , [ [(0,c0), (0,c1), (0,c2), (1,c3)]
61 | [c0, c1, c2] <- combins 3 [0..3]
62 , let c3 = (List.head ([0..3] \\ [c0, c1, c2]) - 2) `mod` 4
63 ]
64 , [ [(0,c0), (0,c1), (1,c2), (1,c3)]
65 | [c0, c1] <- combins 2 [0..3]
66 , let [c2, c3] = ([0..3] \\ [c0, c1]) <&> (\c -> (c - 2) `mod` 4)
67 ]
68 , [ [(0,c0), (0,c1), (2,c2), (2,c3)]
69 | [c0, c1] <- combins 2 [0..3]
70 , let [c2, c3] = [c0, c1] <&> (\c -> (c - 2) `mod` 4)
71 ]
72 , [ [(0,c0), (0,c1), (3,c2), (3,c3)]
73 | [c0, c1] <- combins 2 [0..3]
74 , let [c2, c3] = [c0, c1]
75 ]
76 , [ [(0,c0), (1,c1), (1,c2), (1,c3)]
77 | [c0] <- combins 1 [0..3]
78 , let [c1, c2, c3] = ([0..3] \\ [c0]) <&> (\c -> (c - 2) `mod` 4)
79 ]
80 , [ [(0,c0), (1,c1), (2,c2), (2,c3)]
81 | [c0] <- combins 1 [0..3]
82 , [c1] <- combins 1 ([0..3] \\ [(c0 + 2) `mod` 4])
83 , let [c2, c3] = [(c0 + 2) `mod` 4, c1]
84 ]
85 , [ [(0,c0), (1,c1), (2,c2), (3,c3)]
86 | [c0] <- combins 1 [0..3]
87 , [c1] <- combins 1 ([0..3] \\ [(c0 + 2) `mod` 4])
88 , [c2, c3] <- [[(c0+2)`mod`4, (c1+2)`mod`4], [c1, c0]]
89 ]
90 , [ [(0,c0), (1,c1), (3,c2), (3,c3)]
91 | [c0] <- combins 1 [0..3]
92 , [c1] <- combins 1 ([0..3] \\ [(c0 + 2) `mod` 4])
93 , let [c2, c3] = [c0, (c1+2)`mod`4]
94 ]
95 , [ [(1,c0), (1,c1), (1,c2), (1,c3)]
96 | [c0, c1, c2, c3] <- combins 4 [0..3]
97 ]
98 , [ [(1,c0), (1,c1), (2,c2), (2,c3)]
99 | [c0, c1] <- combins 2 [0..3]
100 , let [c2, c3] = [c0, c1]
101 ]
102 , [ [(1,c0), (1,c1), (2,c2), (3,c3)]
103 | [c0, c1] <- combins 2 [0..3]
104 , let [c2, c3] = [c0, (c1 + 2) `mod` 4]
105 ]
106 , [ [(1,c0), (1,c1), (3,c2), (3,c3)]
107 | [c0, c1] <- combins 2 [0..3]
108 , let [c2, c3] = [(c0 + 2) `mod` 4, (c1 + 2) `mod` 4]
109 ]
110 , [ [(2,c0), (2,c1), (2,c2), (2,c3)]
111 | [c0, c1, c2, c3] <- combins 4 [0..3]
112 ]
113 , [ [(2,c0), (2,c1), (2,c2), (3,c3)]
114 | [c0, c1, c2] <- combins 3 [0..3]
115 , let [c3] = [0..3] \\ [c0, c1, c2]
116 ]
117 , [ [(2,c0), (2,c1), (3,c2), (3,c3)]
118 | [c0, c1] <- combins 2 [0..3]
119 , let [c2, c3] = [c0, c1]
120 ]
121 , [ [(2,c0), (3,c1), (3,c2), (3,c3)]
122 | [c0] <- combins 1 [0..3]
123 , let [c1, c2, c3] = ([0..3] \\ [(c0 + 2) `mod` 4])
124 ]
125 , [ [(3,c0), (3,c1), (3,c2), (3,c3)]
126 | [c0, c1, c2, c3] <- combins 4 [0..3]
127 ]
128 ]
129 ol :: [b] -> [(Integer, b)]
130 ol = zip [0..]
131
132 main :: IO ()
133 main = do
134 IO.withFile "mpms.html" IO.WriteMode $ \h ->
135 Blaze.renderMarkupToByteStringIO (BS.hPutStr h) do
136 H.docTypeHtml do
137 H.head do
138 H.title "Most-Perfect Magic Square"
139 H.link ! HA.rel "stylesheet"
140 ! HA.type_ "text/css"
141 ! HA.href "mpms.css"
142 H.body do
143 H.ul do
144 H.li $ "#squares = " <> show (length validSortedCoords)
145 H.li $ "sum = " <> show (sum (List.head square))
146 H.div ! HA.class_ "squares" $ do
147 forM_ validSortedCoords $ \path ->
148 H.div ! HA.class_ "square" $ do
149 forM_ (ol square) $ \(rowCoord, row) ->
150 forM_ (ol row) $ \(colCoord, num) ->
151 H.span ! HA.class_ ("square-num"<>""<>(if (rowCoord,colCoord) `elem` path then " num-path" else "")) $
152 fromString $ show num
153
154 -- | @'nCk' n k@ retourne le nombre de combinaisons
155 -- de longueur 'k' d’un ensemble de longueur 'n'.
156 --
157 -- Computed using the formula:
158 -- @'nCk' n (k+1) == 'nCk' n (k-1) * (n-k+1) / k@
159 nCk :: Integral i => i -> i -> i
160 n`nCk`k | n<0||k<0||n<k = error "nCk"
161 | otherwise = go 1 1
162 where
163 go i acc = if k' < i then acc else go (i+1) (acc * (n-i+1) `div` i)
164 -- Use a symmetry to compute over smaller numbers,
165 -- which is more efficient and safer
166 k' = if n`div`2 < k then n-k else k
167
168 -- | @combinOfRank n k r@ retourne les indices de permutation
169 -- de la combinaison de 'k' entiers parmi @[1..n]@
170 -- au rang lexicographique 'r' dans @[0..'nCk' n k - 1]@.
171 --
172 -- Construit chaque choix de la combinaison en prenant le prochain plus grand
173 -- dont le successeur engendre un nombre de combinaisons
174 -- qui dépasse le rang restant à atteindre.
175 --
176 -- DOC: <http://www.site.uottawa.ca/~lucia/courses/5165-09/GenCombObj.pdf>, p.26
177 combinOfRank :: Integral i => i -> i -> i -> [i]
178 combinOfRank n k rk | rk<0||n`nCk`k<rk = error "combinOfRank"
179 | otherwise = for1K 1 1 rk
180 where
181 for1K i j r | i < k = uptoRank i j r
182 | i == k = [j+r] -- because when i == k, nbCombs is always 1
183 | otherwise = []
184 uptoRank i j r | nbCombs <- (n-j)`nCk`(k-i)
185 , nbCombs <= r = uptoRank i (j+1) (r-nbCombs)
186 | otherwise = j : for1K (i+1) (j+1) r
187
188 -- | @combins k xs@ retourne les combinaisons
189 -- de longueur 'k' des éléments de la liste 'xs'.
190 combins :: Int -> [a] -> [[a]]
191 combins k xs = combinsK xs List.!! (length xs - k)
192
193 -- | @combinsK xs@ retourne toutes les combinaisons
194 -- de longueur allant de @length xs@ à 0 de la liste 'xs',
195 --
196 -- Algorithme dynamique permettant un calcul de 'combins'
197 -- relativement rapide du fait du partage de 'combinsKmoins1'.
198 combinsK :: [a] -> [[[a]]]
199 combinsK [] = [[[]]]
200 combinsK (x : xs) =
201 zipWith (++) ([] : combinsKmoins1)
202 (map (map (x :)) combinsKmoins1 ++ [[]])
203 where combinsKmoins1 = combinsK xs