]> Git — Sourcephile - haskell/symantic-parser.git/blob - src/Symantic/Parser/Automaton/Instructions.hs
Remove unused extensions
[haskell/symantic-parser.git] / src / Symantic / Parser / Automaton / Instructions.hs
1 {-# LANGUAGE ConstraintKinds #-}
2 {-# LANGUAGE DataKinds #-}
3 {-# LANGUAGE NoPolyKinds #-}
4 {-# LANGUAGE PatternSynonyms #-}
5 {-# LANGUAGE ViewPatterns #-}
6 module Symantic.Parser.Automaton.Instructions where
7
8 import Data.Bool (Bool)
9 import Data.Either (Either)
10 import Data.Eq (Eq)
11 import Data.Function (($), (.))
12 import Text.Show (Show)
13 import qualified Data.Functor as Functor
14 import qualified Language.Haskell.TH.Syntax as TH
15 import qualified Symantic.Parser.Staging as Hask
16
17 import Symantic.Parser.Grammar
18 import Symantic.Univariant.Trans
19
20 -- * Class 'InputPosition'
21 -- | TODO
22 class InputPosition inp where
23
24 -- * Type 'Instr'
25 -- | 'Instr'uctions for the 'Automaton'.
26 data Instr input valueStack (exceptionStack::Peano) returnValue a where
27 -- | @('Ret')@ returns the value in a singleton value-stack.
28 Ret :: Instr inp '[ret] es ret a
29 -- | @('Push' x k)@ pushes @(x)@ on the value-stack and continues with the next 'Instr'uction @(k)@.
30 Push :: InstrPure x -> Instr inp (x ': vs) es ret a -> Instr inp vs es ret a
31 -- | @('Pop' k)@ pushes @(x)@ on the value-stack.
32 Pop :: Instr inp vs es ret a -> Instr inp (x ': vs) es ret a
33 -- | @('LiftI2' f k)@ pops two values from the value-stack, and pushes the result of @(f)@ applied to them.
34 LiftI2 :: InstrPure (x -> y -> z) -> Instr inp (z : vs) es ret a -> Instr inp (y : x : vs) es ret a
35 -- | @('Fail')@ raises an error from the exception-stack.
36 Fail :: Instr inp vs ('Succ es) ret a
37 -- | @('Commit' k)@ removes an exception from the exception-stack and continues with the next 'Instr'uction @(k)@.
38 Commit :: Instr inp vs es ret a -> Instr inp vs ('Succ es) ret a
39 -- | @('Catch' l r)@ tries the @(l)@ 'Instr'uction, if it raises an exception, catches it, pushes the input on the value-stack and continues with the @(r)@ 'Instr'uction.
40 Catch :: Instr inp vs ('Succ es) ret a -> Instr inp (inp ': vs) es ret a -> Instr inp vs es ret a
41 -- | @('Seek' k)@ removes the input from the value-stack and continues with the next 'Instr'uction @(k)@.
42 Seek :: Instr inp vs es r a -> Instr inp (inp : vs) es r a
43 -- | @('Tell' k)@ pushes the input @(inp)@ on the value-stack and continues with the next 'Instr'uction @(k)@.
44 Tell :: Instr inp (inp ': vs) es ret a -> Instr inp vs es ret a
45 -- | @('Case' l r)@.
46 Case :: Instr inp (x ': vs) es r a -> Instr inp (y ': vs) es r a -> Instr inp (Either x y ': vs) es r a
47 -- | @('Swap' k)@ pops two values on the value-stack, pushes the first popped-out, then the second, and continues with the next 'Instr'uction @(k)@.
48 Swap :: Instr inp (x ': y ': vs) es r a -> Instr inp (y ': x ': vs) es r a
49 -- | @('Choices' ps bs d)@.
50 Choices :: [InstrPure (x -> Bool)] -> [Instr inp vs es ret a] -> Instr inp vs es ret a -> Instr inp (x ': vs) es ret a
51 Call :: Addr ret -> Instr inp (x ': xs) ('Succ es) ret a -> Instr inp xs ('Succ es) ret a
52 Jump :: Addr ret -> Instr inp '[] ('Succ es) ret a
53 Label :: Addr ret -> Instr inp (xs) ('Succ es) ret a -> Instr inp xs ('Succ es) ret a
54
55 -- ** Type 'InstrPure'
56 data InstrPure a
57 = InstrPureHaskell (Hask.Haskell a)
58 | InstrPureSameOffset
59 deriving (Show)
60
61 -- ** Type 'Addr'
62 newtype Addr a = Addr { unLabel :: TH.Name }
63 deriving (Eq, Show)
64
65 -- * Class 'Executable'
66 type Executable repr =
67 ( Stackable repr
68 , Branchable repr
69 , Exceptionable repr
70 , Inputable repr
71 , Routinable repr
72 )
73
74 -- ** Class 'Stackable'
75 class Stackable (repr :: * -> [*] -> Peano -> * -> * -> *) where
76 push :: InstrPure x -> repr inp (x ': vs) n ret a -> repr inp vs n ret a
77 pop :: repr inp vs n ret a -> repr inp (x ': vs) n ret a
78 liftI2 :: InstrPure (x -> y -> z) -> repr inp (z ': vs) es ret a -> repr inp (y ': x ': vs) es ret a
79 swap :: repr inp (x ': y ': vs) n r a -> repr inp (y ': x ': vs) n r a
80
81 -- ** Class 'Branchable'
82 class Branchable (repr :: * -> [*] -> Peano -> * -> * -> *) where
83 case_ :: repr inp (x ': vs) n r a -> repr inp (y ': vs) n r a -> repr inp (Either x y ': vs) n r a
84 choices :: [InstrPure (x -> Bool)] -> [repr inp vs es ret a] -> repr inp vs es ret a -> repr inp (x ': vs) es ret a
85
86 -- ** Class 'Exceptionable'
87 class Exceptionable (repr :: * -> [*] -> Peano -> * -> * -> *) where
88 fail :: repr inp vs ('Succ es) ret a
89 commit :: repr inp vs es ret a -> repr inp vs ('Succ es) ret a
90 catch :: repr inp vs ('Succ es) ret a -> repr inp (inp ': vs) es ret a -> repr inp vs es ret a
91
92 -- ** Class 'Inputable'
93 class Inputable (repr :: * -> [*] -> Peano -> * -> * -> *) where
94 seek :: repr inp vs es r a -> repr inp (inp ': vs) es r a
95 tell :: repr inp (inp ': vs) es ret a -> repr inp vs es ret a
96
97 -- ** Class 'Routinable'
98 class Routinable (repr :: * -> [*] -> Peano -> * -> * -> *) where
99 label :: Addr ret -> repr inp vs ('Succ es) ret a -> repr inp vs ('Succ es) ret a
100 call :: Addr ret -> repr inp (x ': vs) ('Succ es) ret a -> repr inp vs ('Succ es) ret a
101 ret :: repr inp '[ret] es ret a
102 jump :: Addr ret -> repr inp '[] ('Succ es) ret a
103
104 instance
105 ( Stackable repr
106 , Branchable repr
107 , Exceptionable repr
108 , Inputable repr
109 , Routinable repr
110 ) => Trans (Instr inp vs es ret) (repr inp vs es ret) where
111 trans = \case
112 Push x k -> push x (trans k)
113 Pop k -> pop (trans k)
114 LiftI2 f k -> liftI2 f (trans k)
115 Fail -> fail
116 Commit k -> commit (trans k)
117 Catch l r -> catch (trans l) (trans r)
118 Seek k -> seek (trans k)
119 Tell k -> tell (trans k)
120 Case l r -> case_ (trans l) (trans r)
121 Swap k -> swap (trans k)
122 Choices ps bs d -> choices ps (trans Functor.<$> bs) (trans d)
123 Label n k -> label n (trans k)
124 Call n (k::Instr inp (x ': vs) ('Succ es') ret a) ->
125 call n (trans k :: repr inp (x ': vs) ('Succ es') ret a)
126 Ret -> ret
127 Jump n -> jump n
128
129 -- ** Type 'Peano'
130 -- | Type-level natural numbers, using the Peano recursive encoding.
131 data Peano = Zero | Succ Peano
132
133 -- | @('App' k)@ pops @(x)@ and @(x2y)@ from the value-stack, pushes @(x2y x)@ and continues with the next 'Instr'uction @(k)@.
134 pattern App :: Instr inp (y : vs) es ret a -> Instr inp (x : (x -> y) : vs) es ret a
135 pattern App k = LiftI2 (InstrPureHaskell (Hask.:$)) k
136
137 -- | @('If' ok ko)@ pops a 'Bool' from the value-stack and continues either with the 'Instr'uction @(ok)@ if it is 'True' or @(ko)@ otherwise.
138 pattern If :: Instr inp vs es ret a -> Instr inp vs es ret a -> Instr inp (Bool ': vs) es ret a
139 pattern If ok ko = Choices [InstrPureHaskell Hask.Id] [ok] ko
140
141 parsecHandler :: InputPosition inp => Instr inp vs ('Succ es) ret a -> Instr inp (inp : vs) ('Succ es) ret a
142 parsecHandler k = Tell (LiftI2 InstrPureSameOffset (If k Fail))
143
144 -- * Type 'Automaton'
145 -- | Making the control-flow explicit.
146 data Automaton inp a x = Automaton { unAutomaton ::
147 forall vs es ret.
148 {-next-}Instr inp (x ': vs) ('Succ es) ret a ->
149 Instr inp vs ('Succ es) ret a
150 }
151
152 automaton ::
153 forall inp a es repr.
154 Executable repr =>
155 Automaton inp a a -> (repr inp '[] ('Succ es) a) a
156 automaton =
157 trans @(Instr inp '[] ('Succ es) a) .
158 ($ Ret) .
159 unAutomaton
160
161 instance Applicable (Automaton inp a) where
162 pure x = Automaton $ Push (InstrPureHaskell x)
163 Automaton f <*> Automaton x = Automaton $ f . x . App
164 liftA2 f (Automaton x) (Automaton y) = Automaton $
165 x . y . LiftI2 (InstrPureHaskell f)
166 Automaton x *> Automaton y = Automaton $ x . Pop . y
167 Automaton x <* Automaton y = Automaton $ x . y . Pop
168 instance
169 InputPosition inp =>
170 Alternable (Automaton inp a) where
171 empty = Automaton $ \_k -> Fail
172 Automaton l <|> Automaton r = Automaton $ \k ->
173 -- TODO: join points
174 Catch (l (Commit k)) (parsecHandler (r k))
175 try (Automaton x) = Automaton $ \k ->
176 Catch (x (Commit k)) (Seek Fail)
177 instance Selectable (Automaton inp a) where
178 branch (Automaton lr) (Automaton l) (Automaton r) = Automaton $ \k ->
179 -- TODO: join points
180 lr (Case (l (Swap (App k)))
181 (r (Swap (App k))))
182 instance Matchable (Automaton inp a) where
183 conditional ps bs (Automaton a) (Automaton default_) =
184 Automaton $ \k ->
185 -- TODO: join points
186 a (Choices (InstrPureHaskell Functor.<$> ps) ((\b -> unAutomaton b k) Functor.<$> bs) (default_ k))
187 instance Lookable (Automaton inp a) where
188 look (Automaton x) = Automaton $ \k ->
189 Tell (x (Swap (Seek k)))
190 negLook (Automaton x) = Automaton $ \k ->
191 Catch (Tell (x (Pop (Seek (Commit Fail)))))
192 (Seek (Push (InstrPureHaskell Hask.unit) k))
193 instance Letable TH.Name (Automaton inp a) where
194 def n (Automaton x) = Automaton $ \k ->
195 Label (Addr n) (x k)
196 ref _isRec n = Automaton $ \case
197 Ret -> Jump (Addr n)
198 k -> Call (Addr n) k