]> Git — Sourcephile - haskell/symantic-parser.git/blob - src/Symantic/Parser/Grammar/Combinators.hs
machine: add horizon optimization
[haskell/symantic-parser.git] / src / Symantic / Parser / Grammar / Combinators.hs
1 -- The default type signature of type class methods are changed
2 -- to introduce a Liftable constraint and the same type class but on the 'Output' repr,
3 -- this setup avoids to define the method with boilerplate code when its default
4 -- definition with lift* and 'trans' does what is expected by an instance
5 -- of the type class. This is almost as explained in:
6 -- https://ro-che.info/articles/2016-02-03-finally-tagless-boilerplate
7 {-# LANGUAGE DefaultSignatures #-}
8 {-# LANGUAGE DeriveLift #-} -- For TH.Lift (ErrorItem tok)
9 {-# LANGUAGE StandaloneDeriving #-} -- For Show (ErrorItem (InputToken inp))
10 {-# LANGUAGE TemplateHaskell #-}
11 module Symantic.Parser.Grammar.Combinators where
12
13 import Data.Bool (Bool(..), not, (||))
14 import Data.Char (Char)
15 import Data.Either (Either(..))
16 import Data.Eq (Eq(..))
17 import Data.Function ((.), flip, const)
18 import Data.Int (Int)
19 import Data.Maybe (Maybe(..))
20 import Data.Ord (Ord)
21 import Data.String (String)
22 import Language.Haskell.TH (CodeQ)
23 import Text.Show (Show(..))
24 import qualified Data.Functor as Functor
25 import qualified Data.List as List
26 import qualified Language.Haskell.TH.Syntax as TH
27
28 import qualified Symantic.Univariant.Trans as Sym
29 import qualified Symantic.Parser.Haskell as H
30
31 -- * Class 'Applicable'
32 -- | This is like the usual 'Functor' and 'Applicative' type classes
33 -- from the @base@ package, but using @('H.Haskell' a)@ instead of just @(a)@
34 -- to be able to use and pattern match on some usual terms of type @(a)@ (like
35 -- 'H.id') and thus apply some optimizations.
36 -- @(repr)@ , for "representation", is the usual tagless-final abstraction
37 -- over the many semantics that this syntax (formed by the methods
38 -- of type class like this one) will be interpreted.
39 class Applicable repr where
40 -- | @(a2b '<$>' ra)@ parses like @(ra)@ but maps its returned value with @(a2b)@.
41 (<$>) :: H.Haskell (a -> b) -> repr a -> repr b
42 (<$>) f = (pure f <*>)
43
44 -- | Like '<$>' but with its arguments 'flip'-ped.
45 (<&>) :: repr a -> H.Haskell (a -> b) -> repr b
46 (<&>) = flip (<$>)
47
48 -- | @(a '<$' rb)@ parses like @(rb)@ but discards its returned value by replacing it with @(a)@.
49 (<$) :: H.Haskell a -> repr b -> repr a
50 (<$) x = (pure x <*)
51
52 -- | @(ra '$>' b)@ parses like @(ra)@ but discards its returned value by replacing it with @(b)@.
53 ($>) :: repr a -> H.Haskell b -> repr b
54 ($>) = flip (<$)
55
56 -- | @('pure' a)@ parses the empty string, always succeeding in returning @(a)@.
57 pure :: H.Haskell a -> repr a
58 default pure ::
59 Sym.Liftable repr => Applicable (Sym.Output repr) =>
60 H.Haskell a -> repr a
61 pure = Sym.lift . pure
62
63 -- | @(ra2b '<*>' ra)@ parses sequentially @(ra2b)@ and then @(ra)@,
64 -- and returns the application of the function returned by @(ra2b)@
65 -- to the value returned by @(ra)@.
66 (<*>) :: repr (a -> b) -> repr a -> repr b
67 default (<*>) ::
68 Sym.Liftable2 repr => Applicable (Sym.Output repr) =>
69 repr (a -> b) -> repr a -> repr b
70 (<*>) = Sym.lift2 (<*>)
71
72 -- | @('liftA2' a2b2c ra rb)@ parses sequentially @(ra)@ and then @(rb)@,
73 -- and returns the application of @(a2b2c)@ to the values returned by those parsers.
74 liftA2 :: H.Haskell (a -> b -> c) -> repr a -> repr b -> repr c
75 liftA2 f x = (<*>) (f <$> x)
76
77 -- | @(ra '<*' rb)@ parses sequentially @(ra)@ and then @(rb)@,
78 -- and returns like @(ra)@, discarding the return value of @(rb)@.
79 (<*) :: repr a -> repr b -> repr a
80 (<*) = liftA2 H.const
81
82 -- | @(ra '*>' rb)@ parses sequentially @(ra)@ and then @(rb)@,
83 -- and returns like @(rb)@, discarding the return value of @(ra)@.
84 (*>) :: repr a -> repr b -> repr b
85 x *> y = (H.id <$ x) <*> y
86
87 -- | Like '<*>' but with its arguments 'flip'-ped.
88 (<**>) :: repr a -> repr (a -> b) -> repr b
89 (<**>) = liftA2 (H.flip H..@ (H.$))
90 {-
91 (<**>) :: repr a -> repr (a -> b) -> repr b
92 (<**>) = liftA2 (\a f -> f a)
93 -}
94 infixl 4 <$>, <&>, <$, $>, <*>, <*, *>, <**>
95
96 -- * Class 'Alternable'
97 class Alternable repr where
98 -- | @(rl '<|>' rr)@ parses @(rl)@ and return its return value or,
99 -- if it fails, parses @(rr)@ from where @(rl)@ has left the input stream,
100 -- and returns its return value.
101 (<|>) :: repr a -> repr a -> repr a
102 -- | @(empty)@ parses nothing, always failing to return a value.
103 empty :: repr a
104 -- | @('try' ra)@ records the input stream position,
105 -- then parses like @(ra)@ and either returns its value it it succeeds or fails
106 -- if it fails but with a reset of the input stream to the recorded position.
107 -- Generally used on the first alternative: @('try' rl '<|>' rr)@.
108 try :: repr a -> repr a
109 default (<|>) ::
110 Sym.Liftable2 repr => Alternable (Sym.Output repr) =>
111 repr a -> repr a -> repr a
112 default empty ::
113 Sym.Liftable repr => Alternable (Sym.Output repr) =>
114 repr a
115 default try ::
116 Sym.Liftable1 repr => Alternable (Sym.Output repr) =>
117 repr a -> repr a
118 (<|>) = Sym.lift2 (<|>)
119 empty = Sym.lift empty
120 try = Sym.lift1 try
121 -- | Like @('<|>')@ but with different returning types for the alternatives,
122 -- and a return value wrapped in an 'Either' accordingly.
123 (<+>) :: Applicable repr => Alternable repr => repr a -> repr b -> repr (Either a b)
124 p <+> q = H.left <$> p <|> H.right <$> q
125 infixl 3 <|>, <+>
126
127 optionally :: Applicable repr => Alternable repr => repr a -> H.Haskell b -> repr b
128 optionally p x = p $> x <|> pure x
129
130 optional :: Applicable repr => Alternable repr => repr a -> repr ()
131 optional = flip optionally H.unit
132
133 option :: Applicable repr => Alternable repr => H.Haskell a -> repr a -> repr a
134 option x p = p <|> pure x
135
136 choice :: Alternable repr => [repr a] -> repr a
137 choice = List.foldr (<|>) empty
138 -- FIXME: Here hlint suggests to use Data.Foldable.asum,
139 -- but at this point there is no asum for our own (<|>)
140
141 maybeP :: Applicable repr => Alternable repr => repr a -> repr (Maybe a)
142 maybeP p = option H.nothing (H.just <$> p)
143
144 manyTill :: Applicable repr => Alternable repr => repr a -> repr b -> repr [a]
145 manyTill p end = let go = end $> H.nil <|> p <:> go in go
146
147 -- * Class 'Selectable'
148 class Selectable repr where
149 branch :: repr (Either a b) -> repr (a -> c) -> repr (b -> c) -> repr c
150 default branch ::
151 Sym.Liftable3 repr => Selectable (Sym.Output repr) =>
152 repr (Either a b) -> repr (a -> c) -> repr (b -> c) -> repr c
153 branch = Sym.lift3 branch
154
155 -- * Class 'Matchable'
156 class Matchable repr where
157 conditional ::
158 Eq a => [H.Haskell (a -> Bool)] -> [repr b] -> repr a -> repr b -> repr b
159 default conditional ::
160 Sym.Unliftable repr => Sym.Liftable2 repr => Matchable (Sym.Output repr) =>
161 Eq a => [H.Haskell (a -> Bool)] -> [repr b] -> repr a -> repr b -> repr b
162 conditional cs bs = Sym.lift2 (conditional cs (Sym.trans Functor.<$> bs))
163
164 match :: Eq a => [H.Haskell a] -> repr a -> (H.Haskell a -> repr b) -> repr b -> repr b
165 match as a a2b = conditional (H.eq Functor.<$> as) (a2b Functor.<$> as) a
166
167 -- * Class 'Foldable'
168 class Foldable repr where
169 chainPre :: repr (a -> a) -> repr a -> repr a
170 chainPost :: repr a -> repr (a -> a) -> repr a
171 {-
172 default chainPre ::
173 Sym.Liftable2 repr => Foldable (Sym.Output repr) =>
174 repr (a -> a) -> repr a -> repr a
175 default chainPost ::
176 Sym.Liftable2 repr => Foldable (Sym.Output repr) =>
177 repr a -> repr (a -> a) -> repr a
178 chainPre = Sym.lift2 chainPre
179 chainPost = Sym.lift2 chainPost
180 -}
181 default chainPre ::
182 Applicable repr =>
183 Alternable repr =>
184 repr (a -> a) -> repr a -> repr a
185 default chainPost ::
186 Applicable repr =>
187 Alternable repr =>
188 repr a -> repr (a -> a) -> repr a
189 chainPre op p = go <*> p
190 where go = (H..) <$> op <*> go <|> pure H.id
191 chainPost p op = p <**> go
192 where go = (H..) <$> op <*> go <|> pure H.id
193
194 {-
195 conditional :: Selectable repr => [(H.Haskell (a -> Bool), repr b)] -> repr a -> repr b -> repr b
196 conditional cs p def = match p fs qs def
197 where (fs, qs) = List.unzip cs
198 -}
199
200 -- * Class 'Satisfiable'
201 class Satisfiable repr tok where
202 satisfy :: [ErrorItem tok] -> H.Haskell (tok -> Bool) -> repr tok
203 default satisfy ::
204 Sym.Liftable repr => Satisfiable (Sym.Output repr) tok =>
205 [ErrorItem tok] ->
206 H.Haskell (tok -> Bool) -> repr tok
207 satisfy es = Sym.lift . satisfy es
208
209 -- ** Type 'ErrorItem'
210 data ErrorItem tok
211 = ErrorItemToken tok
212 | ErrorItemLabel String
213 | ErrorItemHorizon Int
214 | ErrorItemEnd
215 deriving instance Eq tok => Eq (ErrorItem tok)
216 deriving instance Ord tok => Ord (ErrorItem tok)
217 deriving instance Show tok => Show (ErrorItem tok)
218 deriving instance TH.Lift tok => TH.Lift (ErrorItem tok)
219
220 -- * Class 'Lookable'
221 class Lookable repr where
222 look :: repr a -> repr a
223 negLook :: repr a -> repr ()
224 default look :: Sym.Liftable1 repr => Lookable (Sym.Output repr) => repr a -> repr a
225 default negLook :: Sym.Liftable1 repr => Lookable (Sym.Output repr) => repr a -> repr ()
226 look = Sym.lift1 look
227 negLook = Sym.lift1 negLook
228
229 eof :: repr ()
230 eof = Sym.lift eof
231 default eof :: Sym.Liftable repr => Lookable (Sym.Output repr) => repr ()
232 -- eof = negLook (satisfy @_ @Char [ErrorItemAny] (H.const H..@ H.bool True))
233 -- (item @_ @Char)
234
235 {-# INLINE (<:>) #-}
236 infixl 4 <:>
237 (<:>) :: Applicable repr => repr a -> repr [a] -> repr [a]
238 (<:>) = liftA2 H.cons
239
240 sequence :: Applicable repr => [repr a] -> repr [a]
241 sequence = List.foldr (<:>) (pure H.nil)
242
243 traverse :: Applicable repr => (a -> repr b) -> [a] -> repr [b]
244 traverse f = sequence . List.map f
245 -- FIXME: Here hlint suggests to use Control.Monad.mapM,
246 -- but at this point there is no mapM for our own sequence
247
248 repeat :: Applicable repr => Int -> repr a -> repr [a]
249 repeat n p = traverse (const p) [1..n]
250
251 between :: Applicable repr => repr o -> repr c -> repr a -> repr a
252 between open close p = open *> p <* close
253
254 string :: Applicable repr => Satisfiable repr Char => [Char] -> repr [Char]
255 string = traverse char
256
257 -- oneOf :: [Char] -> repr Char
258 -- oneOf cs = satisfy [] (makeQ (flip elem cs) [||\c -> $$(ofChars cs [||c||])||])
259
260 noneOf :: TH.Lift tok => Eq tok => Satisfiable repr tok => [tok] -> repr tok
261 noneOf cs = satisfy (ErrorItemToken Functor.<$> cs) (H.Haskell H.ValueCode{..})
262 where
263 value = H.Value (not . flip List.elem cs)
264 code = [||\c -> not $$(ofChars cs [||c||])||]
265
266 ofChars :: TH.Lift tok => Eq tok => [tok] -> CodeQ tok -> CodeQ Bool
267 ofChars = List.foldr (\c rest qc -> [|| c == $$qc || $$(rest qc) ||]) (const [||False||])
268
269 more :: Applicable repr => Satisfiable repr Char => Lookable repr => repr ()
270 more = look (void (item @_ @Char))
271
272 char :: Applicable repr => Satisfiable repr Char => Char -> repr Char
273 char c = satisfy [ErrorItemToken c] (H.eq (H.char c)) $> H.char c
274
275 anyChar :: Satisfiable repr Char => repr Char
276 anyChar = satisfy [] (H.const H..@ H.bool True)
277
278 token ::
279 TH.Lift tok => Eq tok => Applicable repr =>
280 Satisfiable repr tok => tok -> repr tok
281 token tok = satisfy [ErrorItemToken tok] (H.eq (H.char tok)) $> H.char tok
282
283 tokens ::
284 TH.Lift tok => Eq tok => Applicable repr => Alternable repr =>
285 Satisfiable repr tok => [tok] -> repr [tok]
286 tokens = try . traverse token
287
288 item :: Satisfiable repr tok => repr tok
289 item = satisfy [] (H.const H..@ H.bool True)
290
291 -- Composite Combinators
292 -- someTill :: repr a -> repr b -> repr [a]
293 -- someTill p end = negLook end *> (p <:> manyTill p end)
294
295 void :: Applicable repr => repr a -> repr ()
296 void p = p *> unit
297
298 unit :: Applicable repr => repr ()
299 unit = pure H.unit
300
301 {-
302 constp :: Applicable repr => repr a -> repr (b -> a)
303 constp = (H.const <$>)
304
305
306 -- Alias Operations
307 infixl 1 >>
308 (>>) :: Applicable repr => repr a -> repr b -> repr b
309 (>>) = (*>)
310
311 -- Monoidal Operations
312
313 infixl 4 <~>
314 (<~>) :: Applicable repr => repr a -> repr b -> repr (a, b)
315 (<~>) = liftA2 (H.runtime (,))
316
317 infixl 4 <~
318 (<~) :: Applicable repr => repr a -> repr b -> repr a
319 (<~) = (<*)
320
321 infixl 4 ~>
322 (~>) :: Applicable repr => repr a -> repr b -> repr b
323 (~>) = (*>)
324
325 -- Lift Operations
326 liftA2 ::
327 Applicable repr =>
328 H.Haskell (a -> b -> c) -> repr a -> repr b -> repr c
329 liftA2 f x = (<*>) (fmap f x)
330
331 liftA3 ::
332 Applicable repr =>
333 H.Haskell (a -> b -> c -> d) -> repr a -> repr b -> repr c -> repr d
334 liftA3 f a b c = liftA2 f a b <*> c
335
336 -}
337
338 -- Parser Folds
339 pfoldr ::
340 Applicable repr => Foldable repr =>
341 H.Haskell (a -> b -> b) -> H.Haskell b -> repr a -> repr b
342 pfoldr f k p = chainPre (f <$> p) (pure k)
343
344 pfoldr1 ::
345 Applicable repr => Foldable repr =>
346 H.Haskell (a -> b -> b) -> H.Haskell b -> repr a -> repr b
347 pfoldr1 f k p = f <$> p <*> pfoldr f k p
348
349 pfoldl ::
350 Applicable repr => Foldable repr =>
351 H.Haskell (b -> a -> b) -> H.Haskell b -> repr a -> repr b
352 pfoldl f k p = chainPost (pure k) ((H.flip <$> pure f) <*> p)
353
354 pfoldl1 ::
355 Applicable repr => Foldable repr =>
356 H.Haskell (b -> a -> b) -> H.Haskell b -> repr a -> repr b
357 pfoldl1 f k p = chainPost (f <$> pure k <*> p) ((H.flip <$> pure f) <*> p)
358
359 -- Chain Combinators
360 chainl1' ::
361 Applicable repr => Foldable repr =>
362 H.Haskell (a -> b) -> repr a -> repr (b -> a -> b) -> repr b
363 chainl1' f p op = chainPost (f <$> p) (H.flip <$> op <*> p)
364
365 chainl1 ::
366 Applicable repr => Foldable repr =>
367 repr a -> repr (a -> a -> a) -> repr a
368 chainl1 = chainl1' H.id
369
370 {-
371 chainr1' :: ParserOps rep => rep (a -> b) -> repr a -> repr (a -> b -> b) -> repr b
372 chainr1' f p op = newRegister_ H.id $ \acc ->
373 let go = bind p $ \x ->
374 modify acc (H.flip (H..@) <$> (op <*> x)) *> go
375 <|> f <$> x
376 in go <**> get acc
377
378 chainr1 :: repr a -> repr (a -> a -> a) -> repr a
379 chainr1 = chainr1' H.id
380
381 chainr :: repr a -> repr (a -> a -> a) -> H.Haskell a -> repr a
382 chainr p op x = option x (chainr1 p op)
383 -}
384
385 chainl ::
386 Applicable repr => Alternable repr => Foldable repr =>
387 repr a -> repr (a -> a -> a) -> H.Haskell a -> repr a
388 chainl p op x = option x (chainl1 p op)
389
390 -- Derived Combinators
391 many ::
392 Applicable repr => Foldable repr =>
393 repr a -> repr [a]
394 many = pfoldr H.cons H.nil
395
396 manyN ::
397 Applicable repr => Foldable repr =>
398 Int -> repr a -> repr [a]
399 manyN n p = List.foldr (const (p <:>)) (many p) [1..n]
400
401 some ::
402 Applicable repr => Foldable repr =>
403 repr a -> repr [a]
404 some = manyN 1
405
406 skipMany ::
407 Applicable repr => Foldable repr =>
408 repr a -> repr ()
409 --skipMany p = let skipManyp = p *> skipManyp <|> unit in skipManyp
410 skipMany = void . pfoldl H.const H.unit -- the void here will encourage the optimiser to recognise that the register is unused
411
412 skipManyN ::
413 Applicable repr => Foldable repr =>
414 Int -> repr a -> repr ()
415 skipManyN n p = List.foldr (const (p *>)) (skipMany p) [1..n]
416
417 skipSome ::
418 Applicable repr => Foldable repr =>
419 repr a -> repr ()
420 skipSome = skipManyN 1
421
422 sepBy ::
423 Applicable repr => Alternable repr => Foldable repr =>
424 repr a -> repr b -> repr [a]
425 sepBy p sep = option H.nil (sepBy1 p sep)
426
427 sepBy1 ::
428 Applicable repr => Alternable repr => Foldable repr =>
429 repr a -> repr b -> repr [a]
430 sepBy1 p sep = p <:> many (sep *> p)
431
432 endBy ::
433 Applicable repr => Alternable repr => Foldable repr =>
434 repr a -> repr b -> repr [a]
435 endBy p sep = many (p <* sep)
436
437 endBy1 ::
438 Applicable repr => Alternable repr => Foldable repr =>
439 repr a -> repr b -> repr [a]
440 endBy1 p sep = some (p <* sep)
441
442 sepEndBy ::
443 Applicable repr => Alternable repr => Foldable repr =>
444 repr a -> repr b -> repr [a]
445 sepEndBy p sep = option H.nil (sepEndBy1 p sep)
446
447 sepEndBy1 ::
448 Applicable repr => Alternable repr => Foldable repr =>
449 repr a -> repr b -> repr [a]
450 sepEndBy1 p sep =
451 let seb1 = p <**> (sep *> (H.flip H..@ H.cons <$> option H.nil seb1)
452 <|> pure (H.flip H..@ H.cons H..@ H.nil))
453 in seb1
454
455 {-
456 sepEndBy1 :: repr a -> repr b -> repr [a]
457 sepEndBy1 p sep = newRegister_ H.id $ \acc ->
458 let go = modify acc ((H.flip (H..)) H..@ H.cons <$> p)
459 *> (sep *> (go <|> get acc) <|> get acc)
460 in go <*> pure H.nil
461 -}
462
463 {-
464 -- Combinators interpreters for 'Sym.Any'.
465 instance Applicable repr => Applicable (Sym.Any repr)
466 instance Satisfiable repr => Satisfiable (Sym.Any repr)
467 instance Alternable repr => Alternable (Sym.Any repr)
468 instance Selectable repr => Selectable (Sym.Any repr)
469 instance Matchable repr => Matchable (Sym.Any repr)
470 instance Lookable repr => Lookable (Sym.Any repr)
471 instance Foldable repr => Foldable (Sym.Any repr)
472 -}