1 -- The default type signature of type class methods are changed
2 -- to introduce a Liftable constraint and the same type class but on the 'Output' repr,
3 -- this setup avoids to define the method with boilerplate code when its default
4 -- definition with lift* and 'trans' does what is expected by an instance
5 -- of the type class. This is almost as explained in:
6 -- https://ro-che.info/articles/2016-02-03-finally-tagless-boilerplate
7 {-# LANGUAGE DefaultSignatures #-}
8 {-# LANGUAGE DeriveLift #-} -- For TH.Lift (ErrorItem tok)
9 {-# LANGUAGE StandaloneDeriving #-} -- For Show (ErrorItem (InputToken inp))
10 {-# LANGUAGE TemplateHaskell #-}
11 module Symantic.Parser.Grammar.Combinators where
13 import Data.Bool (Bool(..), not, (||))
14 import Data.Char (Char)
15 import Data.Either (Either(..))
16 import Data.Eq (Eq(..))
17 import Data.Function ((.), flip, const)
19 import Data.Maybe (Maybe(..))
21 import Data.String (String)
22 import Language.Haskell.TH (CodeQ)
23 import Text.Show (Show(..))
24 import qualified Data.Functor as Functor
25 import qualified Data.List as List
26 import qualified Language.Haskell.TH.Syntax as TH
28 import qualified Symantic.Univariant.Trans as Sym
29 import qualified Symantic.Parser.Haskell as H
31 -- * Class 'Applicable'
32 -- | This is like the usual 'Functor' and 'Applicative' type classes
33 -- from the @base@ package, but using @('H.Haskell' a)@ instead of just @(a)@
34 -- to be able to use and pattern match on some usual terms of type @(a)@ (like
35 -- 'H.id') and thus apply some optimizations.
36 -- @(repr)@ , for "representation", is the usual tagless-final abstraction
37 -- over the many semantics that this syntax (formed by the methods
38 -- of type class like this one) will be interpreted.
39 class Applicable repr where
40 -- | @(a2b '<$>' ra)@ parses like @(ra)@ but maps its returned value with @(a2b)@.
41 (<$>) :: H.Haskell (a -> b) -> repr a -> repr b
42 (<$>) f = (pure f <*>)
44 -- | Like '<$>' but with its arguments 'flip'-ped.
45 (<&>) :: repr a -> H.Haskell (a -> b) -> repr b
48 -- | @(a '<$' rb)@ parses like @(rb)@ but discards its returned value by replacing it with @(a)@.
49 (<$) :: H.Haskell a -> repr b -> repr a
52 -- | @(ra '$>' b)@ parses like @(ra)@ but discards its returned value by replacing it with @(b)@.
53 ($>) :: repr a -> H.Haskell b -> repr b
56 -- | @('pure' a)@ parses the empty string, always succeeding in returning @(a)@.
57 pure :: H.Haskell a -> repr a
59 Sym.Liftable repr => Applicable (Sym.Output repr) =>
61 pure = Sym.lift . pure
63 -- | @(ra2b '<*>' ra)@ parses sequentially @(ra2b)@ and then @(ra)@,
64 -- and returns the application of the function returned by @(ra2b)@
65 -- to the value returned by @(ra)@.
66 (<*>) :: repr (a -> b) -> repr a -> repr b
68 Sym.Liftable2 repr => Applicable (Sym.Output repr) =>
69 repr (a -> b) -> repr a -> repr b
70 (<*>) = Sym.lift2 (<*>)
72 -- | @('liftA2' a2b2c ra rb)@ parses sequentially @(ra)@ and then @(rb)@,
73 -- and returns the application of @(a2b2c)@ to the values returned by those parsers.
74 liftA2 :: H.Haskell (a -> b -> c) -> repr a -> repr b -> repr c
75 liftA2 f x = (<*>) (f <$> x)
77 -- | @(ra '<*' rb)@ parses sequentially @(ra)@ and then @(rb)@,
78 -- and returns like @(ra)@, discarding the return value of @(rb)@.
79 (<*) :: repr a -> repr b -> repr a
82 -- | @(ra '*>' rb)@ parses sequentially @(ra)@ and then @(rb)@,
83 -- and returns like @(rb)@, discarding the return value of @(ra)@.
84 (*>) :: repr a -> repr b -> repr b
85 x *> y = (H.id <$ x) <*> y
87 -- | Like '<*>' but with its arguments 'flip'-ped.
88 (<**>) :: repr a -> repr (a -> b) -> repr b
89 (<**>) = liftA2 (H.flip H..@ (H.$))
91 (<**>) :: repr a -> repr (a -> b) -> repr b
92 (<**>) = liftA2 (\a f -> f a)
94 infixl 4 <$>, <&>, <$, $>, <*>, <*, *>, <**>
96 -- * Class 'Alternable'
97 class Alternable repr where
98 -- | @(rl '<|>' rr)@ parses @(rl)@ and return its return value or,
99 -- if it fails, parses @(rr)@ from where @(rl)@ has left the input stream,
100 -- and returns its return value.
101 (<|>) :: repr a -> repr a -> repr a
102 -- | @(empty)@ parses nothing, always failing to return a value.
104 -- | @('try' ra)@ records the input stream position,
105 -- then parses like @(ra)@ and either returns its value it it succeeds or fails
106 -- if it fails but with a reset of the input stream to the recorded position.
107 -- Generally used on the first alternative: @('try' rl '<|>' rr)@.
108 try :: repr a -> repr a
110 Sym.Liftable2 repr => Alternable (Sym.Output repr) =>
111 repr a -> repr a -> repr a
113 Sym.Liftable repr => Alternable (Sym.Output repr) =>
116 Sym.Liftable1 repr => Alternable (Sym.Output repr) =>
118 (<|>) = Sym.lift2 (<|>)
119 empty = Sym.lift empty
121 -- | Like @('<|>')@ but with different returning types for the alternatives,
122 -- and a return value wrapped in an 'Either' accordingly.
123 (<+>) :: Applicable repr => Alternable repr => repr a -> repr b -> repr (Either a b)
124 p <+> q = H.left <$> p <|> H.right <$> q
127 optionally :: Applicable repr => Alternable repr => repr a -> H.Haskell b -> repr b
128 optionally p x = p $> x <|> pure x
130 optional :: Applicable repr => Alternable repr => repr a -> repr ()
131 optional = flip optionally H.unit
133 option :: Applicable repr => Alternable repr => H.Haskell a -> repr a -> repr a
134 option x p = p <|> pure x
136 choice :: Alternable repr => [repr a] -> repr a
137 choice = List.foldr (<|>) empty
138 -- FIXME: Here hlint suggests to use Data.Foldable.asum,
139 -- but at this point there is no asum for our own (<|>)
141 maybeP :: Applicable repr => Alternable repr => repr a -> repr (Maybe a)
142 maybeP p = option H.nothing (H.just <$> p)
144 manyTill :: Applicable repr => Alternable repr => repr a -> repr b -> repr [a]
145 manyTill p end = let go = end $> H.nil <|> p <:> go in go
147 -- * Class 'Selectable'
148 class Selectable repr where
149 branch :: repr (Either a b) -> repr (a -> c) -> repr (b -> c) -> repr c
151 Sym.Liftable3 repr => Selectable (Sym.Output repr) =>
152 repr (Either a b) -> repr (a -> c) -> repr (b -> c) -> repr c
153 branch = Sym.lift3 branch
155 -- * Class 'Matchable'
156 class Matchable repr where
158 Eq a => [H.Haskell (a -> Bool)] -> [repr b] -> repr a -> repr b -> repr b
159 default conditional ::
160 Sym.Unliftable repr => Sym.Liftable2 repr => Matchable (Sym.Output repr) =>
161 Eq a => [H.Haskell (a -> Bool)] -> [repr b] -> repr a -> repr b -> repr b
162 conditional cs bs = Sym.lift2 (conditional cs (Sym.trans Functor.<$> bs))
164 match :: Eq a => [H.Haskell a] -> repr a -> (H.Haskell a -> repr b) -> repr b -> repr b
165 match as a a2b = conditional (H.eq Functor.<$> as) (a2b Functor.<$> as) a
167 -- * Class 'Foldable'
168 class Foldable repr where
169 chainPre :: repr (a -> a) -> repr a -> repr a
170 chainPost :: repr a -> repr (a -> a) -> repr a
173 Sym.Liftable2 repr => Foldable (Sym.Output repr) =>
174 repr (a -> a) -> repr a -> repr a
176 Sym.Liftable2 repr => Foldable (Sym.Output repr) =>
177 repr a -> repr (a -> a) -> repr a
178 chainPre = Sym.lift2 chainPre
179 chainPost = Sym.lift2 chainPost
184 repr (a -> a) -> repr a -> repr a
188 repr a -> repr (a -> a) -> repr a
189 chainPre op p = go <*> p
190 where go = (H..) <$> op <*> go <|> pure H.id
191 chainPost p op = p <**> go
192 where go = (H..) <$> op <*> go <|> pure H.id
195 conditional :: Selectable repr => [(H.Haskell (a -> Bool), repr b)] -> repr a -> repr b -> repr b
196 conditional cs p def = match p fs qs def
197 where (fs, qs) = List.unzip cs
200 -- * Class 'Satisfiable'
201 class Satisfiable repr tok where
202 satisfy :: [ErrorItem tok] -> H.Haskell (tok -> Bool) -> repr tok
204 Sym.Liftable repr => Satisfiable (Sym.Output repr) tok =>
206 H.Haskell (tok -> Bool) -> repr tok
207 satisfy es = Sym.lift . satisfy es
209 -- ** Type 'ErrorItem'
212 | ErrorItemLabel String
214 deriving instance Eq tok => Eq (ErrorItem tok)
215 deriving instance Ord tok => Ord (ErrorItem tok)
216 deriving instance Show tok => Show (ErrorItem tok)
217 deriving instance TH.Lift tok => TH.Lift (ErrorItem tok)
219 -- * Class 'Lookable'
220 class Lookable repr where
221 look :: repr a -> repr a
222 negLook :: repr a -> repr ()
223 default look :: Sym.Liftable1 repr => Lookable (Sym.Output repr) => repr a -> repr a
224 default negLook :: Sym.Liftable1 repr => Lookable (Sym.Output repr) => repr a -> repr ()
225 look = Sym.lift1 look
226 negLook = Sym.lift1 negLook
230 default eof :: Sym.Liftable repr => Lookable (Sym.Output repr) => repr ()
231 -- eof = negLook (satisfy @_ @Char [ErrorItemAny] (H.const H..@ H.bool True))
236 (<:>) :: Applicable repr => repr a -> repr [a] -> repr [a]
237 (<:>) = liftA2 H.cons
239 sequence :: Applicable repr => [repr a] -> repr [a]
240 sequence = List.foldr (<:>) (pure H.nil)
242 traverse :: Applicable repr => (a -> repr b) -> [a] -> repr [b]
243 traverse f = sequence . List.map f
244 -- FIXME: Here hlint suggests to use Control.Monad.mapM,
245 -- but at this point there is no mapM for our own sequence
247 repeat :: Applicable repr => Int -> repr a -> repr [a]
248 repeat n p = traverse (const p) [1..n]
250 between :: Applicable repr => repr o -> repr c -> repr a -> repr a
251 between open close p = open *> p <* close
253 string :: Applicable repr => Satisfiable repr Char => [Char] -> repr [Char]
254 string = traverse char
256 -- oneOf :: [Char] -> repr Char
257 -- oneOf cs = satisfy [] (makeQ (flip elem cs) [||\c -> $$(ofChars cs [||c||])||])
259 noneOf :: TH.Lift tok => Eq tok => Satisfiable repr tok => [tok] -> repr tok
260 noneOf cs = satisfy (ErrorItemToken Functor.<$> cs) (H.Haskell H.ValueCode{..})
262 value = H.Value (not . flip List.elem cs)
263 code = [||\c -> not $$(ofChars cs [||c||])||]
265 ofChars :: TH.Lift tok => Eq tok => [tok] -> CodeQ tok -> CodeQ Bool
266 ofChars = List.foldr (\c rest qc -> [|| c == $$qc || $$(rest qc) ||]) (const [||False||])
268 more :: Applicable repr => Satisfiable repr Char => Lookable repr => repr ()
269 more = look (void (item @_ @Char))
271 char :: Applicable repr => Satisfiable repr Char => Char -> repr Char
272 char c = satisfy [ErrorItemToken c] (H.eq (H.char c)) $> H.char c
274 anyChar :: Satisfiable repr Char => repr Char
275 anyChar = satisfy [] (H.const H..@ H.bool True)
278 TH.Lift tok => Eq tok => Applicable repr =>
279 Satisfiable repr tok => tok -> repr tok
280 token tok = satisfy [ErrorItemToken tok] (H.eq (H.char tok)) $> H.char tok
283 TH.Lift tok => Eq tok => Applicable repr => Alternable repr =>
284 Satisfiable repr tok => [tok] -> repr [tok]
285 tokens = try . traverse token
287 item :: Satisfiable repr tok => repr tok
288 item = satisfy [] (H.const H..@ H.bool True)
290 -- Composite Combinators
291 -- someTill :: repr a -> repr b -> repr [a]
292 -- someTill p end = negLook end *> (p <:> manyTill p end)
294 void :: Applicable repr => repr a -> repr ()
297 unit :: Applicable repr => repr ()
301 constp :: Applicable repr => repr a -> repr (b -> a)
302 constp = (H.const <$>)
307 (>>) :: Applicable repr => repr a -> repr b -> repr b
310 -- Monoidal Operations
313 (<~>) :: Applicable repr => repr a -> repr b -> repr (a, b)
314 (<~>) = liftA2 (H.runtime (,))
317 (<~) :: Applicable repr => repr a -> repr b -> repr a
321 (~>) :: Applicable repr => repr a -> repr b -> repr b
327 H.Haskell (a -> b -> c) -> repr a -> repr b -> repr c
328 liftA2 f x = (<*>) (fmap f x)
332 H.Haskell (a -> b -> c -> d) -> repr a -> repr b -> repr c -> repr d
333 liftA3 f a b c = liftA2 f a b <*> c
339 Applicable repr => Foldable repr =>
340 H.Haskell (a -> b -> b) -> H.Haskell b -> repr a -> repr b
341 pfoldr f k p = chainPre (f <$> p) (pure k)
344 Applicable repr => Foldable repr =>
345 H.Haskell (a -> b -> b) -> H.Haskell b -> repr a -> repr b
346 pfoldr1 f k p = f <$> p <*> pfoldr f k p
349 Applicable repr => Foldable repr =>
350 H.Haskell (b -> a -> b) -> H.Haskell b -> repr a -> repr b
351 pfoldl f k p = chainPost (pure k) ((H.flip <$> pure f) <*> p)
354 Applicable repr => Foldable repr =>
355 H.Haskell (b -> a -> b) -> H.Haskell b -> repr a -> repr b
356 pfoldl1 f k p = chainPost (f <$> pure k <*> p) ((H.flip <$> pure f) <*> p)
360 Applicable repr => Foldable repr =>
361 H.Haskell (a -> b) -> repr a -> repr (b -> a -> b) -> repr b
362 chainl1' f p op = chainPost (f <$> p) (H.flip <$> op <*> p)
365 Applicable repr => Foldable repr =>
366 repr a -> repr (a -> a -> a) -> repr a
367 chainl1 = chainl1' H.id
370 chainr1' :: ParserOps rep => rep (a -> b) -> repr a -> repr (a -> b -> b) -> repr b
371 chainr1' f p op = newRegister_ H.id $ \acc ->
372 let go = bind p $ \x ->
373 modify acc (H.flip (H..@) <$> (op <*> x)) *> go
377 chainr1 :: repr a -> repr (a -> a -> a) -> repr a
378 chainr1 = chainr1' H.id
380 chainr :: repr a -> repr (a -> a -> a) -> H.Haskell a -> repr a
381 chainr p op x = option x (chainr1 p op)
385 Applicable repr => Alternable repr => Foldable repr =>
386 repr a -> repr (a -> a -> a) -> H.Haskell a -> repr a
387 chainl p op x = option x (chainl1 p op)
389 -- Derived Combinators
391 Applicable repr => Foldable repr =>
393 many = pfoldr H.cons H.nil
396 Applicable repr => Foldable repr =>
397 Int -> repr a -> repr [a]
398 manyN n p = List.foldr (const (p <:>)) (many p) [1..n]
401 Applicable repr => Foldable repr =>
406 Applicable repr => Foldable repr =>
408 --skipMany p = let skipManyp = p *> skipManyp <|> unit in skipManyp
409 skipMany = void . pfoldl H.const H.unit -- the void here will encourage the optimiser to recognise that the register is unused
412 Applicable repr => Foldable repr =>
413 Int -> repr a -> repr ()
414 skipManyN n p = List.foldr (const (p *>)) (skipMany p) [1..n]
417 Applicable repr => Foldable repr =>
419 skipSome = skipManyN 1
422 Applicable repr => Alternable repr => Foldable repr =>
423 repr a -> repr b -> repr [a]
424 sepBy p sep = option H.nil (sepBy1 p sep)
427 Applicable repr => Alternable repr => Foldable repr =>
428 repr a -> repr b -> repr [a]
429 sepBy1 p sep = p <:> many (sep *> p)
432 Applicable repr => Alternable repr => Foldable repr =>
433 repr a -> repr b -> repr [a]
434 endBy p sep = many (p <* sep)
437 Applicable repr => Alternable repr => Foldable repr =>
438 repr a -> repr b -> repr [a]
439 endBy1 p sep = some (p <* sep)
442 Applicable repr => Alternable repr => Foldable repr =>
443 repr a -> repr b -> repr [a]
444 sepEndBy p sep = option H.nil (sepEndBy1 p sep)
447 Applicable repr => Alternable repr => Foldable repr =>
448 repr a -> repr b -> repr [a]
450 let seb1 = p <**> (sep *> (H.flip H..@ H.cons <$> option H.nil seb1)
451 <|> pure (H.flip H..@ H.cons H..@ H.nil))
455 sepEndBy1 :: repr a -> repr b -> repr [a]
456 sepEndBy1 p sep = newRegister_ H.id $ \acc ->
457 let go = modify acc ((H.flip (H..)) H..@ H.cons <$> p)
458 *> (sep *> (go <|> get acc) <|> get acc)
463 -- Combinators interpreters for 'Sym.Any'.
464 instance Applicable repr => Applicable (Sym.Any repr)
465 instance Satisfiable repr => Satisfiable (Sym.Any repr)
466 instance Alternable repr => Alternable (Sym.Any repr)
467 instance Selectable repr => Selectable (Sym.Any repr)
468 instance Matchable repr => Matchable (Sym.Any repr)
469 instance Lookable repr => Lookable (Sym.Any repr)
470 instance Foldable repr => Foldable (Sym.Any repr)