]> Git — Sourcephile - majurity.git/blob - hjugement-protocol/Protocol/Arith.hs
protocol: Fix Credential
[majurity.git] / hjugement-protocol / Protocol / Arith.hs
1 module Protocol.Arith where
2
3 import Control.Arrow (first)
4 import Control.Monad (Monad(..))
5 import Data.Bits
6 import Data.Bool
7 import Data.Eq (Eq(..))
8 import Data.Foldable (Foldable, foldl', foldMap)
9 import Data.Function (($), (.), on)
10 import Data.Int (Int)
11 import Data.Maybe (Maybe(..))
12 import Data.Ord (Ord(..), Ordering(..))
13 import Data.Semigroup (Semigroup(..))
14 import Data.String (IsString(..))
15 import Prelude (Integer, Integral(..), fromIntegral, Enum(..))
16 import Text.Show (Show(..))
17 import qualified Control.Monad.Trans.State.Strict as S
18 import qualified Crypto.Hash as Crypto
19 import qualified Data.ByteArray as ByteArray
20 import qualified Data.ByteString as BS
21 import qualified Data.List as List
22 import qualified Prelude as N
23 import qualified System.Random as Random
24
25 -- * Type 'F'
26 -- | The type of the elements of a 'PrimeField'.
27 --
28 -- A field must satisfy the following properties:
29 --
30 -- * @(f, ('+'), 'zero')@ forms an abelian group,
31 -- called the 'Additive' group of 'f'.
32 --
33 -- * @('NonNull' f, ('*'), 'one')@ forms an abelian group,
34 -- called the 'Multiplicative' group of 'f'.
35 --
36 -- * ('*') is associative:
37 -- @(a'*'b)'*'c == a'*'(b'*'c)@ and
38 -- @a'*'(b'*'c) == (a'*'b)'*'c@.
39 --
40 -- * ('*') and ('+') are both commutative:
41 -- @a'*'b == b'*'a@ and
42 -- @a'+'b == b'+'a@
43 --
44 -- * ('*') and ('+') are both left and right distributive:
45 -- @a'*'(b'+'c) == (a'*'b) '+' (a'*'c)@ and
46 -- @(a'+'b)'*'c == (a'*'c) '+' (b'*'c)@
47 --
48 -- The 'Integer' is always within @[0..'fieldCharac'-1]@.
49 newtype F p = F { unF :: Integer }
50 deriving (Eq,Ord,Show)
51
52 inF :: forall p i. PrimeField p => Integral i => i -> F p
53 inF i = F (abs (fromIntegral i `mod` fieldCharac @p))
54 where abs x | x < 0 = x + fieldCharac @p
55 | otherwise = x
56
57 instance PrimeField p => Additive (F p) where
58 zero = F 0
59 F x + F y = F ((x + y) `mod` fieldCharac @p)
60 instance PrimeField p => Negable (F p) where
61 neg (F x) | x == 0 = zero
62 | otherwise = F (N.negate x + fieldCharac @p)
63 instance PrimeField p => Multiplicative (F p) where
64 one = F 1
65 -- | Because 'fieldCharac' is prime,
66 -- all elements of the field are invertible modulo 'fieldCharac'.
67 F x * F y = F ((x * y) `mod` fieldCharac @p)
68 instance PrimeField p => Random.Random (F p) where
69 randomR (F lo, F hi) =
70 first F . Random.randomR
71 (max 0 lo, min hi (fieldCharac @p - 1))
72 random = first F . Random.randomR (0, fieldCharac @p - 1)
73
74 -- ** Class 'PrimeField'
75 -- | Parameter for a prime field.
76 class PrimeField p where
77 -- | The prime number characteristic of a 'PrimeField'.
78 --
79 -- ElGamal's hardness to decrypt requires a large prime number
80 -- to form the 'Multiplicative' 'SubGroup'.
81 fieldCharac :: Integer
82
83 -- ** Class 'Additive'
84 class Additive a where
85 zero :: a
86 (+) :: a -> a -> a; infixl 6 +
87 sum :: Foldable f => f a -> a
88 sum = foldl' (+) zero
89 instance Additive Integer where
90 zero = 0
91 (+) = (N.+)
92 instance Additive Int where
93 zero = 0
94 (+) = (N.+)
95
96 -- *** Class 'Negable'
97 class Additive a => Negable a where
98 neg :: a -> a
99 (-) :: a -> a -> a; infixl 6 -
100 x-y = x + neg y
101 instance Negable Integer where
102 neg = N.negate
103 instance Negable Int where
104 neg = N.negate
105
106 -- ** Class 'Multiplicative'
107 class Multiplicative a where
108 one :: a
109 (*) :: a -> a -> a; infixl 7 *
110 instance Multiplicative Integer where
111 one = 1
112 (*) = (N.*)
113 instance Multiplicative Int where
114 one = 1
115 (*) = (N.*)
116
117 -- ** Class 'Invertible'
118 class Multiplicative a => Invertible a where
119 inv :: a -> a
120 (/) :: a -> a -> a; infixl 7 /
121 x/y = x * inv y
122
123 -- * Type 'G'
124 -- | The type of the elements of a 'Multiplicative' 'SubGroup' of a 'PrimeField'.
125 newtype G q = G { unG :: F (P q) }
126 deriving (Eq,Ord,Show)
127
128 -- | @('intG' g)@ returns the element of the 'SubGroup' 'g'
129 -- as an 'Integer' within @[0..'fieldCharac'-1]@.
130 intG :: SubGroup q => G q -> Integer
131 intG = unF . unG
132
133 instance (SubGroup q, Multiplicative (F (P q))) => Multiplicative (G q) where
134 one = G one
135 G x * G y = G (x * y)
136 instance (SubGroup q, Multiplicative (F (P q))) => Invertible (G q) where
137 -- | NOTE: add 'groupOrder' so the exponent given to (^) is positive.
138 inv = (^ (E (neg one + groupOrder @q)))
139
140 -- ** Class 'SubGroupOfPrimeField'
141 -- | A 'SubGroup' of a 'PrimeField'.
142 -- Used for signing (Schnorr) and encrypting (ElGamal).
143 class
144 ( PrimeField (P q)
145 , Multiplicative (F (P q))
146 ) => SubGroup q where
147 -- | Setting 'q' determines 'p', equals to @'P' q@.
148 type P q :: *
149 -- | A generator of the 'SubGroup'.
150 -- NOTE: since @F p@ is a 'PrimeField',
151 -- the 'Multiplicative' 'SubGroup' is cyclic,
152 -- and there are phi('fieldCharac'-1) many choices for the generator of the group,
153 -- where phi is the Euler totient function.
154 groupGen :: G q
155 -- | The order of the 'SubGroup'.
156 --
157 -- WARNING: 'groupOrder' MUST be a prime number dividing @('fieldCharac'-1)@
158 -- to ensure that ensures that ElGamal is secure in terms
159 -- of the DDH assumption.
160 groupOrder :: F (P q)
161
162 -- | 'groupGenInverses' returns the infinite list
163 -- of 'inv'erse powers of 'groupGen':
164 -- @['groupGen' '^' 'neg' i | i <- [0..]]@,
165 -- but by computing each value from the previous one.
166 --
167 -- NOTE: 'groupGenInverses' is in the 'SubGroup' class in order to keep
168 -- computed terms in memory accross calls to 'groupGenInverses'.
169 --
170 -- Used by 'elgamalDisjProve'.
171 groupGenInverses :: [G q]
172 groupGenInverses = go one
173 where
174 go g = g : go (g * invGen)
175 invGen = inv groupGen
176
177 -- | @('hash' prefix gs)@ returns as a number in @('F' p)@
178 -- the SHA256 of the given 'prefix' prefixing the decimal representation
179 -- of given 'SubGroup' elements 'gs', each one postfixed with a comma (",").
180 hash ::
181 SubGroup q =>
182 BS.ByteString -> [G q] -> E q
183 hash prefix gs =
184 let s = prefix <> foldMap (\(G (F i)) -> fromString (show i) <> fromString ",") gs in
185 let h = ByteArray.convert (Crypto.hashWith Crypto.SHA256 s) in
186 inE (BS.foldl' (\acc b -> acc`shiftL`3 + fromIntegral b) (0::Integer) h)
187
188 -- * Type 'E'
189 -- | An exponent of a (necessarily cyclic) 'SubGroup' of a 'PrimeField'.
190 -- The value is always in @[0..'groupOrder'-1]@.
191 newtype E q = E { unE :: F (P q) }
192 deriving (Eq,Ord,Show)
193
194 inE :: forall q i. SubGroup q => Integral i => i -> E q
195 inE i = E (F (abs (fromIntegral i `mod` unF (groupOrder @q))))
196 where abs x | x < 0 = x + unF (groupOrder @q)
197 | otherwise = x
198
199 intE :: forall q. SubGroup q => E q -> Integer
200 intE = unF . unE
201
202 instance (SubGroup q, Additive (F (P q))) => Additive (E q) where
203 zero = E zero
204 E (F x) + E (F y) = E (F ((x + y) `mod` unF (groupOrder @q)))
205 instance (SubGroup q, Negable (F (P q))) => Negable (E q) where
206 neg (E (F x)) | x == 0 = zero
207 | otherwise = E (F (neg x + unF (groupOrder @q)))
208 instance (SubGroup q, Multiplicative (F (P q))) => Multiplicative (E q) where
209 one = E one
210 E (F x) * E (F y) = E (F ((x * y) `mod` unF (groupOrder @q)))
211 instance SubGroup q => Random.Random (E q) where
212 randomR (E (F lo), E (F hi)) =
213 first (E . F) . Random.randomR
214 (max 0 lo, min hi (unF (groupOrder @q) - 1))
215 random = first (E . F) . Random.randomR (0, unF (groupOrder @q) - 1)
216 instance SubGroup q => Enum (E q) where
217 toEnum = inE
218 fromEnum = fromIntegral . intE
219 enumFromTo lo hi = List.unfoldr
220 (\i -> if i<=hi then Just (i, i+one) else Nothing) lo
221
222 infixr 8 ^
223 -- | @(b '^' e)@ returns the modular exponentiation of base 'b' by exponent 'e'.
224 (^) :: SubGroup q => G q -> E q -> G q
225 (^) b (E (F e))
226 | e == zero = one
227 | otherwise = t * (b*b) ^ E (F (e`shiftR`1))
228 where
229 t | testBit e 0 = b
230 | otherwise = one
231
232 -- * Type 'RandomGen'
233 type RandomGen = Random.RandomGen
234
235 randomR ::
236 Monad m =>
237 RandomGen r =>
238 Random.Random i =>
239 Negable i =>
240 Multiplicative i =>
241 i -> S.StateT r m i
242 randomR i = S.StateT $ return . Random.randomR (zero, i-one)
243
244 random ::
245 Monad m =>
246 RandomGen r =>
247 Random.Random i =>
248 Negable i =>
249 Multiplicative i =>
250 S.StateT r m i
251 random = S.StateT $ return . Random.random
252
253 -- * Groups
254
255 -- ** Type 'WeakParams'
256 -- | Weak parameters for debugging purposes only.
257 data WeakParams
258 instance PrimeField WeakParams where
259 fieldCharac = 263
260 instance SubGroup WeakParams where
261 type P WeakParams = WeakParams
262 groupGen = G (F 2)
263 groupOrder = F 131
264
265 -- ** Type 'BeleniosParams'
266 -- | Parameters used in Belenios.
267 -- A 2048-bit 'fieldCharac' of a 'PrimeField',
268 -- with a 256-bit 'groupOrder' for a 'Multiplicative' 'SubGroup'
269 -- generated by 'groupGen',
270 data BeleniosParams
271 instance PrimeField BeleniosParams where
272 fieldCharac = 20694785691422546401013643657505008064922989295751104097100884787057374219242717401922237254497684338129066633138078958404960054389636289796393038773905722803605973749427671376777618898589872735865049081167099310535867780980030790491654063777173764198678527273474476341835600035698305193144284561701911000786737307333564123971732897913240474578834468260652327974647951137672658693582180046317922073668860052627186363386088796882120769432366149491002923444346373222145884100586421050242120365433561201320481118852408731077014151666200162313177169372189248078507711827842317498073276598828825169183103125680162072880719
273 instance SubGroup BeleniosParams where
274 type P BeleniosParams = BeleniosParams
275 groupGen = G (F 2402352677501852209227687703532399932712287657378364916510075318787663274146353219320285676155269678799694668298749389095083896573425601900601068477164491735474137283104610458681314511781646755400527402889846139864532661215055797097162016168270312886432456663834863635782106154918419982534315189740658186868651151358576410138882215396016043228843603930989333662772848406593138406010231675095763777982665103606822406635076697764025346253773085133173495194248967754052573659049492477631475991575198775177711481490920456600205478127054728238140972518639858334115700568353695553423781475582491896050296680037745308460627)
276 groupOrder = F 78571733251071885079927659812671450121821421258408794611510081919805623223441