]> Git — Sourcephile - majurity.git/blob - hjugement-protocol/src/Voting/Protocol/FFC.hs
cli: update to new symantic-cli
[majurity.git] / hjugement-protocol / src / Voting / Protocol / FFC.hs
1 {-# LANGUAGE DeriveAnyClass #-}
2 {-# LANGUAGE DeriveGeneric #-}
3 {-# LANGUAGE DerivingStrategies #-}
4 {-# LANGUAGE OverloadedStrings #-}
5 {-# LANGUAGE UndecidableInstances #-} -- for Reifies instances
6 {-# OPTIONS_GHC -fno-warn-orphans #-}
7 -- | Finite Field Cryptography (FFC)
8 -- is a method of implementing discrete logarithm cryptography
9 -- using finite field mathematics.
10 module Voting.Protocol.FFC
11 ( module Voting.Protocol.FFC
12 , Natural
13 , Random.RandomGen
14 , Reifies(..), reify
15 , Proxy(..)
16 ) where
17
18 import Control.Arrow (first)
19 import Control.DeepSeq (NFData)
20 import Control.Monad (Monad(..), unless)
21 import Data.Aeson (ToJSON(..),FromJSON(..),(.:),(.:?),(.=))
22 import Data.Bits
23 import Data.Bool
24 import Data.Either (Either(..))
25 import Data.Eq (Eq(..))
26 import Data.Foldable (Foldable, foldl')
27 import Data.Function (($), (.), id)
28 import Data.Functor ((<$>))
29 import Data.Int (Int)
30 import Data.Maybe (Maybe(..), fromMaybe, fromJust)
31 import Data.Monoid (Monoid(..))
32 import Data.Ord (Ord(..))
33 import Data.Proxy (Proxy(..))
34 import Data.Reflection (Reifies(..), reify)
35 import Data.Semigroup (Semigroup(..))
36 import Data.String (IsString(..))
37 import Data.Text (Text)
38 import GHC.Generics (Generic)
39 import GHC.Natural (minusNaturalMaybe)
40 import Numeric.Natural (Natural)
41 import Prelude (Integer, Integral(..), fromIntegral, Enum(..))
42 import Text.Read (readMaybe, readEither)
43 import Text.Show (Show(..))
44 import qualified Control.Monad.Trans.State.Strict as S
45 import qualified Crypto.Hash as Crypto
46 import qualified Data.Aeson as JSON
47 import qualified Data.Aeson.Types as JSON
48 import qualified Data.ByteArray as ByteArray
49 import qualified Data.ByteString as BS
50 import qualified Data.Char as Char
51 import qualified Data.List as List
52 import qualified Data.Text as Text
53 import qualified Data.Text.Lazy as TL
54 import qualified Data.Text.Lazy.Builder as TLB
55 import qualified Data.Text.Lazy.Builder.Int as TLB
56 import qualified Prelude as Num
57 import qualified System.Random as Random
58
59 -- * Type 'FFC'
60 -- | Mutiplicative Sub-Group of a Finite Prime Field.
61 --
62 -- NOTE: an 'FFC' term-value is brought into the context of many functions
63 -- through a type-variable @c@ whose 'Reifies' constraint enables to 'reflect'
64 -- that 'FFC' at the term-level (a surprising technique but a very useful one).
65 -- Doing like this is simpler than working in a 'Monad' (like a 'Reader'),
66 -- and enables that 'FFC' term to be used simply in instances' methods
67 -- not supporting an inner 'Monad', like 'parseJSON', 'randomR', 'fromEnum' or 'arbitrary'.
68 -- Aside from that, the sharing of 'FFC' amongst several types
69 -- is encoded at the type-level by including @c@
70 -- as a phantom type of 'F', 'G' and 'E'.
71 data FFC = FFC
72 { ffc_name :: Text
73 , ffc_fieldCharac :: !Natural
74 -- ^ The prime number characteristic of a Finite Prime Field.
75 --
76 -- ElGamal's hardness to decrypt requires a large prime number
77 -- to form the 'Multiplicative' subgroup.
78 , ffc_groupGen :: !Natural
79 -- ^ A generator of the 'Multiplicative' subgroup of the Finite Prime Field.
80 --
81 -- NOTE: since 'ffc_fieldCharac' is prime,
82 -- the 'Multiplicative' subgroup is cyclic,
83 -- and there are phi('fieldCharac'-1) many choices for the generator of the group,
84 -- where phi is the Euler totient function.
85 , ffc_groupOrder :: !Natural
86 -- ^ The order of the subgroup.
87 --
88 -- WARNING: 'ffc_groupOrder' MUST be a prime number dividing @('ffc_fieldCharac'-1)@
89 -- to ensure that ElGamal is secure in terms of the DDH assumption.
90 } deriving (Eq,Show,Generic,NFData)
91 instance ToJSON FFC where
92 toJSON FFC{..} =
93 JSON.object $
94 (if Text.null ffc_name then [] else ["name" .= ffc_name] ) <>
95 [ "p" .= show ffc_fieldCharac
96 , "g" .= show ffc_groupGen
97 , "q" .= show ffc_groupOrder
98 ]
99 toEncoding FFC{..} =
100 JSON.pairs $
101 (if Text.null ffc_name then mempty else "name" .= ffc_name) <>
102 "p" .= show ffc_fieldCharac <>
103 "g" .= show ffc_groupGen <>
104 "q" .= show ffc_groupOrder
105 instance FromJSON FFC where
106 parseJSON = JSON.withObject "FFC" $ \o -> do
107 ffc_name <- fromMaybe "" <$> (o .:? "name")
108 p <- o .: "p"
109 g <- o .: "g"
110 q <- o .: "q"
111 -- TODO: check p is probable prime
112 -- TODO: check q is probable prime
113 ffc_fieldCharac <- case readEither (Text.unpack p) of
114 Left err -> JSON.typeMismatch ("FFC: fieldCharac: "<>err) (JSON.String p)
115 Right a -> return a
116 ffc_groupGen <- case readEither (Text.unpack g) of
117 Left err -> JSON.typeMismatch ("FFC: groupGen: "<>err) (JSON.String g)
118 Right a -> return a
119 ffc_groupOrder <- case readEither (Text.unpack q) of
120 Left err -> JSON.typeMismatch ("FFC: groupOrder: "<>err) (JSON.String q)
121 Right a -> return a
122 unless (nat ffc_groupGen < ffc_fieldCharac) $
123 JSON.typeMismatch "FFC: groupGen is not lower than fieldCharac" (JSON.Object o)
124 unless (ffc_groupOrder < ffc_fieldCharac) $
125 JSON.typeMismatch "FFC: groupOrder is not lower than fieldCharac" (JSON.Object o)
126 unless (nat ffc_groupGen > 1) $
127 JSON.typeMismatch "FFC: groupGen is not greater than 1" (JSON.Object o)
128 unless (fromJust (ffc_fieldCharac`minusNaturalMaybe`one) `rem` ffc_groupOrder == 0) $
129 JSON.typeMismatch "FFC: groupOrder does not divide fieldCharac-1" (JSON.Object o)
130 return FFC{..}
131
132 fieldCharac :: forall c. Reifies c FFC => Natural
133 fieldCharac = ffc_fieldCharac (reflect (Proxy::Proxy c))
134
135 groupGen :: forall c. Reifies c FFC => G c
136 groupGen = G $ F $ ffc_groupGen (reflect (Proxy::Proxy c))
137
138 groupOrder :: forall c. Reifies c FFC => Natural
139 groupOrder = ffc_groupOrder (reflect (Proxy::Proxy c))
140
141 -- ** Examples
142 -- | Weak parameters for debugging purposes only.
143 weakFFC :: FFC
144 weakFFC = FFC
145 { ffc_name = "weakFFC"
146 , ffc_fieldCharac = 263
147 , ffc_groupGen = 2
148 , ffc_groupOrder = 131
149 }
150
151 -- | Parameters used in Belenios.
152 -- A 2048-bit 'fieldCharac' of a Finite Prime Field,
153 -- with a 256-bit 'groupOrder' for a 'Multiplicative' subgroup
154 -- generated by 'groupGen'.
155 beleniosFFC :: FFC
156 beleniosFFC = FFC
157 { ffc_name = "beleniosFFC"
158 , ffc_fieldCharac = 20694785691422546401013643657505008064922989295751104097100884787057374219242717401922237254497684338129066633138078958404960054389636289796393038773905722803605973749427671376777618898589872735865049081167099310535867780980030790491654063777173764198678527273474476341835600035698305193144284561701911000786737307333564123971732897913240474578834468260652327974647951137672658693582180046317922073668860052627186363386088796882120769432366149491002923444346373222145884100586421050242120365433561201320481118852408731077014151666200162313177169372189248078507711827842317498073276598828825169183103125680162072880719
159 , ffc_groupGen = 2402352677501852209227687703532399932712287657378364916510075318787663274146353219320285676155269678799694668298749389095083896573425601900601068477164491735474137283104610458681314511781646755400527402889846139864532661215055797097162016168270312886432456663834863635782106154918419982534315189740658186868651151358576410138882215396016043228843603930989333662772848406593138406010231675095763777982665103606822406635076697764025346253773085133173495194248967754052573659049492477631475991575198775177711481490920456600205478127054728238140972518639858334115700568353695553423781475582491896050296680037745308460627
160 , ffc_groupOrder = 78571733251071885079927659812671450121821421258408794611510081919805623223441
161 }
162
163 -- * Type 'F'
164 -- | The type of the elements of a Finite Prime Field.
165 --
166 -- A field must satisfy the following properties:
167 --
168 -- * @(f, ('+'), 'zero')@ forms an abelian group,
169 -- called the 'Additive' group of 'f'.
170 --
171 -- * @('NonNull' f, ('*'), 'one')@ forms an abelian group,
172 -- called the 'Multiplicative' group of 'f'.
173 --
174 -- * ('*') is associative:
175 -- @(a'*'b)'*'c == a'*'(b'*'c)@ and
176 -- @a'*'(b'*'c) == (a'*'b)'*'c@.
177 --
178 -- * ('*') and ('+') are both commutative:
179 -- @a'*'b == b'*'a@ and
180 -- @a'+'b == b'+'a@
181 --
182 -- * ('*') and ('+') are both left and right distributive:
183 -- @a'*'(b'+'c) == (a'*'b) '+' (a'*'c)@ and
184 -- @(a'+'b)'*'c == (a'*'c) '+' (b'*'c)@
185 --
186 -- The 'Natural' is always within @[0..'fieldCharac'-1]@.
187 newtype F c = F { unF :: Natural }
188 deriving (Eq,Ord,Show)
189 deriving newtype NFData
190 instance ToJSON (F c) where
191 toJSON (F x) = JSON.toJSON (show x)
192 instance Reifies c FFC => FromJSON (F c) where
193 parseJSON (JSON.String s)
194 | Just (c0,_) <- Text.uncons s
195 , c0 /= '0'
196 , Text.all Char.isDigit s
197 , Just x <- readMaybe (Text.unpack s)
198 , x < fieldCharac @c
199 = return (F x)
200 parseJSON json = JSON.typeMismatch "FieldElement" json
201 instance Reifies c FFC => FromNatural (F c) where
202 fromNatural i = F $ abs $ i `mod` fieldCharac @c
203 where
204 abs x | x < 0 = x + fieldCharac @c
205 | otherwise = x
206 instance ToNatural (F c) where
207 nat = unF
208 instance Reifies c FFC => Additive (F c) where
209 zero = F 0
210 F x + F y = F $ (x + y) `mod` fieldCharac @c
211 instance Reifies c FFC => Negable (F c) where
212 neg (F x)
213 | x == 0 = zero
214 | otherwise = F $ fromJust $ nat (fieldCharac @c)`minusNaturalMaybe`x
215 instance Reifies c FFC => Multiplicative (F c) where
216 one = F 1
217 F x * F y = F $ (x * y) `mod` fieldCharac @c
218 instance Reifies c FFC => Random.Random (F c) where
219 randomR (F lo, F hi) =
220 first (F . fromIntegral) .
221 Random.randomR
222 ( 0`max`toInteger lo
223 , toInteger hi`min`(toInteger (fieldCharac @c) - 1) )
224 random =
225 first (F . fromIntegral) .
226 Random.randomR (0, toInteger (fieldCharac @c) - 1)
227
228 -- ** Class 'Additive'
229 class Additive a where
230 zero :: a
231 (+) :: a -> a -> a; infixl 6 +
232 sum :: Foldable f => f a -> a
233 sum = foldl' (+) zero
234 instance Additive Natural where
235 zero = 0
236 (+) = (Num.+)
237 instance Additive Integer where
238 zero = 0
239 (+) = (Num.+)
240 instance Additive Int where
241 zero = 0
242 (+) = (Num.+)
243
244 -- *** Class 'Negable'
245 class Additive a => Negable a where
246 neg :: a -> a
247 (-) :: a -> a -> a; infixl 6 -
248 x-y = x + neg y
249 instance Negable Integer where
250 neg = Num.negate
251 instance Negable Int where
252 neg = Num.negate
253
254 -- ** Class 'Multiplicative'
255 class Multiplicative a where
256 one :: a
257 (*) :: a -> a -> a; infixl 7 *
258 instance Multiplicative Natural where
259 one = 1
260 (*) = (Num.*)
261 instance Multiplicative Integer where
262 one = 1
263 (*) = (Num.*)
264 instance Multiplicative Int where
265 one = 1
266 (*) = (Num.*)
267
268 -- ** Class 'Invertible'
269 class Multiplicative a => Invertible a where
270 inv :: a -> a
271 (/) :: a -> a -> a; infixl 7 /
272 x/y = x * inv y
273
274 -- * Type 'G'
275 -- | The type of the elements of a 'Multiplicative' subgroup of a Finite Prime Field.
276 newtype G c = G { unG :: F c }
277 deriving (Eq,Ord,Show)
278 deriving newtype NFData
279 instance ToJSON (G c) where
280 toJSON (G x) = JSON.toJSON x
281 instance Reifies c FFC => FromJSON (G c) where
282 parseJSON (JSON.String s)
283 | Just (c0,_) <- Text.uncons s
284 , c0 /= '0'
285 , Text.all Char.isDigit s
286 , Just x <- readMaybe (Text.unpack s)
287 , x < fieldCharac @c
288 , r <- G (F x)
289 , r ^ E (groupOrder @c) == one
290 = return r
291 parseJSON json = JSON.typeMismatch "GroupElement" json
292 instance Reifies c FFC => FromNatural (G c) where
293 fromNatural = G . fromNatural
294 instance ToNatural (G c) where
295 nat = unF . unG
296 instance Reifies c FFC => Multiplicative (G c) where
297 one = G $ F one
298 G x * G y = G (x * y)
299 instance Reifies c FFC => Invertible (G c) where
300 -- | NOTE: add 'groupOrder' so the exponent given to (^) is positive.
301 inv = (^ E (fromJust $ groupOrder @c`minusNaturalMaybe`1))
302
303 -- | 'groupGenInverses' returns the infinite list
304 -- of 'inv'erse powers of 'groupGen':
305 -- @['groupGen' '^' 'neg' i | i <- [0..]]@,
306 -- but by computing each value from the previous one.
307 --
308 -- Used by 'intervalDisjunctions'.
309 groupGenInverses :: forall c. Reifies c FFC => [G c]
310 groupGenInverses = go one
311 where
312 invGen = inv $ groupGen @c
313 go g = g : go (g * invGen)
314
315 groupGenPowers :: forall c. Reifies c FFC => [G c]
316 groupGenPowers = go one
317 where go g = g : go (g * groupGen @c)
318
319 -- | @('hash' bs gs)@ returns as a number in 'E'
320 -- the 'Crypto.SHA256' hash of the given 'BS.ByteString' 'bs'
321 -- prefixing the decimal representation of given subgroup elements 'gs',
322 -- with a comma (",") intercalated between them.
323 --
324 -- NOTE: to avoid any collision when the 'hash' function is used in different contexts,
325 -- a message 'gs' is actually prefixed by a 'bs' indicating the context.
326 --
327 -- Used by 'proveEncryption' and 'verifyEncryption',
328 -- where the 'bs' usually contains the 'statement' to be proven,
329 -- and the 'gs' contains the 'commitments'.
330 hash :: Reifies c FFC => BS.ByteString -> [G c] -> E c
331 hash bs gs = do
332 let s = bs <> BS.intercalate (fromString ",") (bytesNat <$> gs)
333 let h = Crypto.hashWith Crypto.SHA256 s
334 fromNatural $
335 decodeBigEndian $ ByteArray.convert h
336
337 -- | @('hexHash' bs)@ returns the 'Crypto.SHA256' hash
338 -- of the given 'BS.ByteString' 'bs', escaped in hexadecimal
339 -- into a 'Text' of 32 lowercase characters.
340 --
341 -- Used (in retro-dependencies of this library) to hash
342 -- the 'PublicKey' of a voter or a trustee.
343 hexHash :: BS.ByteString -> Text
344 hexHash bs =
345 let h = Crypto.hashWith Crypto.SHA256 bs in
346 let n = decodeBigEndian $ ByteArray.convert h in
347 -- NOTE: always set the 256 bit then remove it
348 -- to always have leading zeros,
349 -- and thus always 64 characters wide hashes.
350 TL.toStrict $
351 TL.tail $ TLB.toLazyText $ TLB.hexadecimal $
352 setBit n 256
353
354 -- | @('decodeBigEndian' bs)@ interpret @bs@ as big-endian number.
355 decodeBigEndian :: BS.ByteString -> Natural
356 decodeBigEndian =
357 BS.foldl'
358 (\acc b -> acc`shiftL`8 + fromIntegral b)
359 (0::Natural)
360
361 -- * Type 'E'
362 -- | An exponent of a (necessarily cyclic) subgroup of a Finite Prime Field.
363 -- The value is always in @[0..'groupOrder'-1]@.
364 newtype E c = E { unE :: Natural }
365 deriving (Eq,Ord,Show)
366 deriving newtype NFData
367 instance ToJSON (E c) where
368 toJSON (E x) = JSON.toJSON (show x)
369 instance Reifies c FFC => FromJSON (E c) where
370 parseJSON (JSON.String s)
371 | Just (c0,_) <- Text.uncons s
372 , c0 /= '0'
373 , Text.all Char.isDigit s
374 , Just x <- readMaybe (Text.unpack s)
375 , x < groupOrder @c
376 = return (E x)
377 parseJSON json = JSON.typeMismatch "Exponent" json
378
379 instance Reifies c FFC => FromNatural (E c) where
380 fromNatural i =
381 E $ abs $ i `mod` groupOrder @c
382 where
383 abs x | x < 0 = x + groupOrder @c
384 | otherwise = x
385 instance ToNatural (E c) where
386 nat = unE
387
388 instance Reifies c FFC => Additive (E c) where
389 zero = E zero
390 E x + E y = E $ (x + y) `mod` groupOrder @c
391 instance Reifies c FFC => Negable (E c) where
392 neg (E x)
393 | x == 0 = zero
394 | otherwise = E $ fromJust $ nat (groupOrder @c)`minusNaturalMaybe`x
395 instance Reifies c FFC => Multiplicative (E c) where
396 one = E one
397 E x * E y = E $ (x * y) `mod` groupOrder @c
398 instance Reifies c FFC => Random.Random (E c) where
399 randomR (E lo, E hi) =
400 first (E . fromIntegral) .
401 Random.randomR
402 ( 0`max`toInteger lo
403 , toInteger hi`min`(toInteger (groupOrder @c) - 1) )
404 random =
405 first (E . fromIntegral) .
406 Random.randomR (0, toInteger (groupOrder @c) - 1)
407 instance Reifies c FFC => Enum (E c) where
408 toEnum = fromNatural . fromIntegral
409 fromEnum = fromIntegral . nat
410 enumFromTo lo hi = List.unfoldr
411 (\i -> if i<=hi then Just (i, i+one) else Nothing) lo
412
413 infixr 8 ^
414 -- | @(b '^' e)@ returns the modular exponentiation of base 'b' by exponent 'e'.
415 (^) :: Reifies c FFC => G c -> E c -> G c
416 (^) b (E e)
417 | e == 0 = one
418 | otherwise = t * (b*b) ^ E (e`shiftR`1)
419 where
420 t | testBit e 0 = b
421 | otherwise = one
422
423 -- | @('randomR' i)@ returns a random integer in @[0..i-1]@.
424 randomR ::
425 Monad m =>
426 Random.RandomGen r =>
427 Random.Random i =>
428 Negable i =>
429 Multiplicative i =>
430 i -> S.StateT r m i
431 randomR i = S.StateT $ return . Random.randomR (zero, i-one)
432
433 -- | @('random')@ returns a random integer
434 -- in the range determined by its type.
435 random ::
436 Monad m =>
437 Random.RandomGen r =>
438 Random.Random i =>
439 Negable i =>
440 Multiplicative i =>
441 S.StateT r m i
442 random = S.StateT $ return . Random.random
443
444 instance Random.Random Natural where
445 randomR (mini,maxi) =
446 first (fromIntegral::Integer -> Natural) .
447 Random.randomR (fromIntegral mini, fromIntegral maxi)
448 random = first (fromIntegral::Integer -> Natural) . Random.random
449
450 -- * Conversions
451
452 -- ** Class 'FromNatural'
453 class FromNatural a where
454 fromNatural :: Natural -> a
455
456 -- ** Class 'ToNatural'
457 class ToNatural a where
458 nat :: a -> Natural
459 instance ToNatural Natural where
460 nat = id
461
462 -- | @('bytesNat' x)@ returns the serialization of 'x'.
463 bytesNat :: ToNatural n => n -> BS.ByteString
464 bytesNat = fromString . show . nat