]> Git — Sourcephile - majurity.git/blob - hjugement-protocol/src/Voting/Protocol/Arithmetic.hs
protocol: add benchmarks
[majurity.git] / hjugement-protocol / src / Voting / Protocol / Arithmetic.hs
1 {-# OPTIONS_GHC -fno-warn-orphans #-}
2 module Voting.Protocol.Arithmetic
3 ( module Voting.Protocol.Arithmetic
4 , Natural
5 , Random.RandomGen
6 ) where
7
8 import Control.Arrow (first)
9 import Control.DeepSeq (NFData)
10 import Control.Monad (Monad(..))
11 import Data.Bits
12 import Data.Bool
13 import Data.Eq (Eq(..))
14 import Data.Foldable (Foldable, foldl')
15 import Data.Function (($), (.))
16 import Data.Functor ((<$>))
17 import Data.Int (Int)
18 import Data.Maybe (Maybe(..))
19 import Data.Ord (Ord(..))
20 import Data.Semigroup (Semigroup(..))
21 import Data.String (String, IsString(..))
22 import Numeric.Natural (Natural)
23 import Prelude (Integer, Integral(..), fromIntegral, Enum(..))
24 import Text.Show (Show(..))
25 import qualified Control.Monad.Trans.State.Strict as S
26 import qualified Crypto.Hash as Crypto
27 import qualified Data.ByteArray as ByteArray
28 import qualified Data.ByteString as BS
29 import qualified Data.List as List
30 import qualified Prelude as Num
31 import qualified System.Random as Random
32
33 -- * Type 'F'
34 -- | The type of the elements of a 'PrimeField'.
35 --
36 -- A field must satisfy the following properties:
37 --
38 -- * @(f, ('+'), 'zero')@ forms an abelian group,
39 -- called the 'Additive' group of 'f'.
40 --
41 -- * @('NonNull' f, ('*'), 'one')@ forms an abelian group,
42 -- called the 'Multiplicative' group of 'f'.
43 --
44 -- * ('*') is associative:
45 -- @(a'*'b)'*'c == a'*'(b'*'c)@ and
46 -- @a'*'(b'*'c) == (a'*'b)'*'c@.
47 --
48 -- * ('*') and ('+') are both commutative:
49 -- @a'*'b == b'*'a@ and
50 -- @a'+'b == b'+'a@
51 --
52 -- * ('*') and ('+') are both left and right distributive:
53 -- @a'*'(b'+'c) == (a'*'b) '+' (a'*'c)@ and
54 -- @(a'+'b)'*'c == (a'*'c) '+' (b'*'c)@
55 --
56 -- The 'Natural' is always within @[0..'fieldCharac'-1]@.
57 newtype F p = F { unF :: Natural }
58 deriving (Eq,Ord,Show,NFData)
59
60 instance PrimeField p => FromNatural (F p) where
61 fromNatural i = F (abs (i `mod` fieldCharac @p))
62 where abs x | x < 0 = x + fieldCharac @p
63 | otherwise = x
64 instance ToNatural (F p) where
65 nat = unF
66
67 instance PrimeField p => Additive (F p) where
68 zero = F 0
69 F x + F y = F ((x + y) `mod` fieldCharac @p)
70 instance PrimeField p => Negable (F p) where
71 neg (F x) | x == 0 = zero
72 | otherwise = F (fromIntegral (Num.negate (toInteger x) + toInteger (fieldCharac @p)))
73 instance PrimeField p => Multiplicative (F p) where
74 one = F 1
75 -- | Because 'fieldCharac' is prime,
76 -- all elements of the field are invertible modulo 'fieldCharac'.
77 F x * F y = F ((x * y) `mod` fieldCharac @p)
78 instance PrimeField p => Random.Random (F p) where
79 randomR (F lo, F hi) =
80 first (F . fromIntegral) .
81 Random.randomR
82 ( 0`max`toInteger lo
83 , toInteger hi`min`(toInteger (fieldCharac @p) - 1))
84 random = first (F . fromIntegral) . Random.randomR (0, toInteger (fieldCharac @p) - 1)
85
86 -- ** Class 'PrimeField'
87 -- | Parameter for a prime field.
88 class PrimeField p where
89 -- | The prime number characteristic of a 'PrimeField'.
90 --
91 -- ElGamal's hardness to decrypt requires a large prime number
92 -- to form the 'Multiplicative' 'SubGroup'.
93 fieldCharac :: Natural
94
95 -- ** Class 'Additive'
96 class Additive a where
97 zero :: a
98 (+) :: a -> a -> a; infixl 6 +
99 sum :: Foldable f => f a -> a
100 sum = foldl' (+) zero
101 instance Additive Natural where
102 zero = 0
103 (+) = (Num.+)
104 instance Additive Integer where
105 zero = 0
106 (+) = (Num.+)
107 instance Additive Int where
108 zero = 0
109 (+) = (Num.+)
110
111 -- *** Class 'Negable'
112 class Additive a => Negable a where
113 neg :: a -> a
114 (-) :: a -> a -> a; infixl 6 -
115 x-y = x + neg y
116 instance Negable Integer where
117 neg = Num.negate
118 instance Negable Int where
119 neg = Num.negate
120
121 -- ** Class 'Multiplicative'
122 class Multiplicative a where
123 one :: a
124 (*) :: a -> a -> a; infixl 7 *
125 instance Multiplicative Natural where
126 one = 1
127 (*) = (Num.*)
128 instance Multiplicative Integer where
129 one = 1
130 (*) = (Num.*)
131 instance Multiplicative Int where
132 one = 1
133 (*) = (Num.*)
134
135 -- ** Class 'Invertible'
136 class Multiplicative a => Invertible a where
137 inv :: a -> a
138 (/) :: a -> a -> a; infixl 7 /
139 x/y = x * inv y
140
141 -- * Type 'G'
142 -- | The type of the elements of a 'Multiplicative' 'SubGroup' of a 'PrimeField'.
143 newtype G q = G { unG :: F (P q) }
144 deriving (Eq,Ord,Show,NFData)
145
146 instance PrimeField (P q) => FromNatural (G q) where
147 fromNatural = G . fromNatural
148 instance ToNatural (G q) where
149 nat = unF . unG
150
151 instance (SubGroup q, Multiplicative (F (P q))) => Multiplicative (G q) where
152 one = G one
153 G x * G y = G (x * y)
154 instance (SubGroup q, Multiplicative (F (P q))) => Invertible (G q) where
155 -- | NOTE: add 'groupOrder' so the exponent given to (^) is positive.
156 inv = (^ E (neg one + groupOrder @q))
157
158 -- ** Class 'SubGroup'
159 -- | A 'SubGroup' of a 'Multiplicative' group of a 'PrimeField'.
160 -- Used for signing (Schnorr) and encrypting (ElGamal).
161 class
162 ( PrimeField (P q)
163 , Multiplicative (F (P q))
164 ) => SubGroup q where
165 -- | Setting 'q' determines 'p', equals to @'P' q@.
166 type P q :: *
167 -- | A generator of the 'SubGroup'.
168 -- NOTE: since @F p@ is a 'PrimeField',
169 -- the 'Multiplicative' 'SubGroup' is cyclic,
170 -- and there are phi('fieldCharac'-1) many choices for the generator of the group,
171 -- where phi is the Euler totient function.
172 groupGen :: G q
173 -- | The order of the 'SubGroup'.
174 --
175 -- WARNING: 'groupOrder' MUST be a prime number dividing @('fieldCharac'-1)@
176 -- to ensure that ElGamal is secure in terms of the DDH assumption.
177 groupOrder :: F (P q)
178
179 -- | 'groupGenInverses' returns the infinite list
180 -- of 'inv'erse powers of 'groupGen':
181 -- @['groupGen' '^' 'neg' i | i <- [0..]]@,
182 -- but by computing each value from the previous one.
183 --
184 -- NOTE: 'groupGenInverses' is in the 'SubGroup' class in order to keep
185 -- computed terms in memory across calls to 'groupGenInverses'.
186 --
187 -- Used by 'intervalDisjunctions'.
188 groupGenInverses :: [G q]
189 groupGenInverses = go one
190 where
191 go g = g : go (g * invGen)
192 invGen = inv groupGen
193
194 groupGenPowers :: SubGroup q => [G q]
195 groupGenPowers = go one
196 where go g = g : go (g * groupGen)
197
198 -- | @('hash' bs gs)@ returns as a number in 'E'
199 -- the SHA256 of the given 'BS.ByteString' 'bs'
200 -- prefixing the decimal representation of given 'SubGroup' elements 'gs',
201 -- with a comma (",") intercalated between them.
202 --
203 -- NOTE: to avoid any collision when the 'hash' function is used in different contexts,
204 -- a message 'gs' is actually prefixed by a 'bs' indicating the context.
205 --
206 -- Used by 'proveEncryption' and 'verifyEncryption',
207 -- where the 'bs' usually contains the 'statement' to be proven,
208 -- and the 'gs' contains the 'commitments'.
209 hash ::
210 SubGroup q =>
211 BS.ByteString -> [G q] -> E q
212 hash bs gs =
213 let s = bs <> BS.intercalate (fromString ",") (bytesNat <$> gs) in
214 let h = ByteArray.convert (Crypto.hashWith Crypto.SHA256 s) in
215 fromNatural (BS.foldl' (\acc b -> acc`shiftL`3 + fromIntegral b) (0::Natural) h)
216
217 -- * Type 'E'
218 -- | An exponent of a (necessarily cyclic) 'SubGroup' of a 'PrimeField'.
219 -- The value is always in @[0..'groupOrder'-1]@.
220 newtype E q = E { unE :: F (P q) }
221 deriving (Eq,Ord,Show,NFData)
222
223 instance SubGroup q => FromNatural (E q) where
224 fromNatural i = E (F (abs (i `mod` unF (groupOrder @q))))
225 where abs x | x < 0 = x + unF (groupOrder @q)
226 | otherwise = x
227 instance ToNatural (E q) where
228 nat = unF . unE
229
230 instance (SubGroup q, Additive (F (P q))) => Additive (E q) where
231 zero = E zero
232 E (F x) + E (F y) = E (F ((x + y) `mod` unF (groupOrder @q)))
233 instance (SubGroup q, Negable (F (P q))) => Negable (E q) where
234 neg (E (F x)) | x == 0 = zero
235 | otherwise = E (F (fromIntegral ( neg (toInteger x)
236 + toInteger (unF (groupOrder @q)) )))
237 instance (SubGroup q, Multiplicative (F (P q))) => Multiplicative (E q) where
238 one = E one
239 E (F x) * E (F y) = E (F ((x * y) `mod` unF (groupOrder @q)))
240 instance SubGroup q => Random.Random (E q) where
241 randomR (E (F lo), E (F hi)) =
242 first (E . F . fromIntegral) .
243 Random.randomR
244 ( 0`max`toInteger lo
245 , toInteger hi`min`(toInteger (unF (groupOrder @q)) - 1) )
246 random =
247 first (E . F . fromIntegral) .
248 Random.randomR (0, toInteger (unF (groupOrder @q)) - 1)
249 instance SubGroup q => Enum (E q) where
250 toEnum = fromNatural . fromIntegral
251 fromEnum = fromIntegral . nat
252 enumFromTo lo hi = List.unfoldr
253 (\i -> if i<=hi then Just (i, i+one) else Nothing) lo
254
255 infixr 8 ^
256 -- | @(b '^' e)@ returns the modular exponentiation of base 'b' by exponent 'e'.
257 (^) :: SubGroup q => G q -> E q -> G q
258 (^) b (E (F e))
259 | e == zero = one
260 | otherwise = t * (b*b) ^ E (F (e`shiftR`1))
261 where
262 t | testBit e 0 = b
263 | otherwise = one
264
265 -- | @('randomR' i)@ returns a random integer in @[0..i-1]@.
266 randomR ::
267 Monad m =>
268 Random.RandomGen r =>
269 Random.Random i =>
270 Negable i =>
271 Multiplicative i =>
272 i -> S.StateT r m i
273 randomR i = S.StateT $ return . Random.randomR (zero, i-one)
274
275 -- | @('random')@ returns a random integer
276 -- in the range determined by its type.
277 random ::
278 Monad m =>
279 Random.RandomGen r =>
280 Random.Random i =>
281 Negable i =>
282 Multiplicative i =>
283 S.StateT r m i
284 random = S.StateT $ return . Random.random
285
286 instance Random.Random Natural where
287 randomR (mini,maxi) =
288 first (fromIntegral::Integer -> Natural) .
289 Random.randomR (fromIntegral mini, fromIntegral maxi)
290 random = first (fromIntegral::Integer -> Natural) . Random.random
291
292 -- * Groups
293
294 -- * Type 'Params'
295 class SubGroup q => Params q where
296 paramsName :: String
297 instance Params WeakParams where
298 paramsName = "WeakParams"
299 instance Params BeleniosParams where
300 paramsName = "BeleniosParams"
301
302 -- ** Type 'WeakParams'
303 -- | Weak parameters for debugging purposes only.
304 data WeakParams
305 instance PrimeField WeakParams where
306 fieldCharac = 263
307 instance SubGroup WeakParams where
308 type P WeakParams = WeakParams
309 groupGen = G (F 2)
310 groupOrder = F 131
311
312 -- ** Type 'BeleniosParams'
313 -- | Parameters used in Belenios.
314 -- A 2048-bit 'fieldCharac' of a 'PrimeField',
315 -- with a 256-bit 'groupOrder' for a 'Multiplicative' 'SubGroup'
316 -- generated by 'groupGen'.
317 data BeleniosParams
318 instance PrimeField BeleniosParams where
319 fieldCharac = 20694785691422546401013643657505008064922989295751104097100884787057374219242717401922237254497684338129066633138078958404960054389636289796393038773905722803605973749427671376777618898589872735865049081167099310535867780980030790491654063777173764198678527273474476341835600035698305193144284561701911000786737307333564123971732897913240474578834468260652327974647951137672658693582180046317922073668860052627186363386088796882120769432366149491002923444346373222145884100586421050242120365433561201320481118852408731077014151666200162313177169372189248078507711827842317498073276598828825169183103125680162072880719
320 instance SubGroup BeleniosParams where
321 type P BeleniosParams = BeleniosParams
322 groupGen = G (F 2402352677501852209227687703532399932712287657378364916510075318787663274146353219320285676155269678799694668298749389095083896573425601900601068477164491735474137283104610458681314511781646755400527402889846139864532661215055797097162016168270312886432456663834863635782106154918419982534315189740658186868651151358576410138882215396016043228843603930989333662772848406593138406010231675095763777982665103606822406635076697764025346253773085133173495194248967754052573659049492477631475991575198775177711481490920456600205478127054728238140972518639858334115700568353695553423781475582491896050296680037745308460627)
323 groupOrder = F 78571733251071885079927659812671450121821421258408794611510081919805623223441
324
325 -- * Conversions
326
327 -- ** Class 'FromNatural'
328 class FromNatural a where
329 fromNatural :: Natural -> a
330
331 -- ** Class 'ToNatural'
332 class ToNatural a where
333 nat :: a -> Natural
334
335 -- | @('bytesNat' x)@ returns the serialization of 'x'.
336 bytesNat :: ToNatural n => n -> BS.ByteString
337 bytesNat = fromString . show . nat