]> Git — Sourcephile - majurity.git/blob - hjugement/test/HUnit/Rank.hs
protocol: Add Arith
[majurity.git] / hjugement / test / HUnit / Rank.hs
1 module HUnit.Rank where
2
3 import Data.Bool
4 import Data.Eq (Eq(..))
5 import Data.Foldable (Foldable(..))
6 import Data.Function (($), (.))
7 import Data.Functor ((<$>))
8 import Data.List
9 import Data.Ord (Ord(..))
10 import Data.Ratio
11 import Data.Semigroup (Semigroup(..))
12 import GHC.Exts (IsList(..))
13 import Majority.Judgment
14 import Prelude (Integer, Num(..), fromIntegral)
15 import Test.Tasty
16 import Test.Tasty.HUnit
17 import Text.Show (Show(..))
18
19 import QuickCheck.Merit ()
20 import QuickCheck.Value ()
21
22 hunit :: TestTree
23 hunit = testGroup "Rank"
24 [ testGroup "lexicographic"
25 [ testLexRank 1 1
26 , testLexRank 5 4
27 , testLexRank 5 5
28 , testLexRank 10 5
29 , testLexRank 15 5
30 ]
31 , testGroup "majority"
32 [ testMajRank 1 1
33 , testMajRank 3 2
34 , testMajRank 5 4
35 , testMajRank 5 5
36 , testMajRank 9 5
37 , testMajRank 10 5
38 , testMajRank 11 5
39 , testMajRank 12 5
40 , testMajRank 13 5
41 , testMajRank 14 5
42 , testMajRank 15 5
43 {-
44 , testMajRank 25 4
45 , testMajRank 25 5
46 , testMajRank 20 6
47 , testMajRank 30 4
48 , testMajRank 30 5
49 , testMajRank 10 10
50 -}
51 ]
52 ]
53
54 testLexRank :: JS -> GS -> TestTree
55 testLexRank js gs =
56 testGroup ("js="<>show js<>" gs="<>show gs)
57 [ testCase "lexicographicRankOfMerit" $
58 lexicographicRankOfMerit gs <$> merits js gs
59 @?= [0..lastRank js gs]
60 , testCase "lexRankOfMerit . meritOfLexRank == id" $
61 let ranks = [0..lastRank js gs] in
62 lexicographicRankOfMerit gs . meritOfLexicographicRank js gs
63 <$> ranks @?= ranks
64 , testCase "meritOfLexRank . lexRankOfMerit == id" $
65 let dists = merits js gs in
66 meritOfLexicographicRank js gs . lexicographicRankOfMerit gs
67 <$> dists @?= dists
68 ]
69
70 testMajRank :: JS -> GS -> TestTree
71 testMajRank js gs =
72 let mvs = majorityValues js gs in
73 testGroup ("js="<>show js<>" gs="<>show gs<>" ("<>show (countMerits js gs)<>" merits)")
74 [ testCase "listMediansBefore" $
75 sum (countMedian js gs <$> listMediansBefore js gs 0 (Median (gs,gs)))
76 @?= countMerits js gs
77 , testCase "majorityValueOfRank" $
78 majorityValueOfRank js gs <$> [0..lastRank js gs] @?= mvs
79 , testCase "rankOfMajorityValue" $
80 rankOfMajorityValue gs <$> mvs @?= [0..lastRank js gs]
81 {- NOTE: already implied by the previous tests.
82 , testCase "rankOfMV . mvOfRank == id" $
83 rankOfMajorityValue gs . majorityValueOfRank js gs
84 <$> [0..lastRank js gs] @?= [0..lastRank js gs]
85 , testCase "mvOfRank . rankOfMV == id" $
86 majorityValueOfRank js gs . rankOfMajorityValue gs
87 <$> mvs @?= mvs
88 -}
89 ]
90
91 -- | Generate all distributions possible, in lexicographic order.
92 merits :: JS -> GS -> [[G]]
93 merits js0 gs = go 0 js0
94 where
95 go g js
96 | g == gs - 1 = [replicate (fromIntegral js) g]
97 | otherwise = concat
98 [ (replicate (fromIntegral r) g <>) <$> go (g+1) (js-r)
99 | r <- reverse [0..js]
100 ]
101
102 -- | Generate all distributions possible, in majority order.
103 majorityValues :: JS -> GS -> [MajorityValue (Ranked ())]
104 majorityValues js0 gs = sort $ majorityValue . fromList <$> go 0 js0
105 where
106 go g js
107 | g == gs - 1 = [[(Ranked (g, ()), js%1)]]
108 | otherwise = concat
109 [ ((Ranked (g, ()), r%1) :) <$> go (g+1) (js-r)
110 | r <- reverse [0..js]
111 ]
112
113 lexicographicRankOfMerit :: GS -> [Integer] -> Integer
114 lexicographicRankOfMerit gsI dist = go 0 ranks dist
115 where
116 js = fromIntegral $ length dist
117 gs = fromIntegral gsI
118 ranks = reverse $ reverse . take gs <$> take js pascalDiagonals
119 go g0 (p:ps) (d:ds) =
120 sum (take dI p) +
121 go d (drop dI <$> ps) ds
122 where dI = fromIntegral (d - g0)
123 go _ _ _ = 0
124
125 meritOfLexicographicRank :: JS -> GS -> Integer -> [Integer]
126 meritOfLexicographicRank jsI gsI = go 0 ranks
127 where
128 js = fromIntegral jsI
129 gs = fromIntegral gsI
130 ranks = reverse $ reverse . take gs <$> take js pascalDiagonals
131 go _g0 [] _r = []
132 go g0 (p:ps) r = g : go g (drop s <$> ps) (r-dr)
133 where
134 skip = takeWhile (<= r) $ scanl1 (+) p
135 s = length skip
136 g = g0 + fromIntegral s
137 dr = if null skip then 0 else last skip
138
139 -- | Diagonals of Pascal's triangle.
140 pascalDiagonals :: [[Integer]]
141 pascalDiagonals = repeat 1 : (scanl1 (+) <$> pascalDiagonals)