1 module Protocol.Arith where
3 import Control.Arrow (first)
4 import Control.Monad (Monad(..))
7 import Data.Eq (Eq(..))
8 import Data.Foldable (Foldable, foldl', foldMap)
9 import Data.Function (($), (.), on)
11 import Data.Maybe (Maybe(..))
12 import Data.Ord (Ord(..), Ordering(..))
13 import Data.Semigroup (Semigroup(..))
14 import Data.String (IsString(..))
15 import Prelude (Integer, Integral(..), fromIntegral, Enum(..))
16 import Text.Show (Show(..))
17 import qualified Control.Monad.Trans.State.Strict as S
18 import qualified Crypto.Hash as Crypto
19 import qualified Data.ByteArray as ByteArray
20 import qualified Data.ByteString as BS
21 import qualified Data.List as List
22 import qualified Prelude as N
23 import qualified System.Random as Random
26 -- | The type of the elements of a 'PrimeField'.
28 -- A field must satisfy the following properties:
30 -- * @(f, ('+'), 'zero')@ forms an abelian group,
31 -- called the 'Additive' group of 'f'.
33 -- * @('NonNull' f, ('*'), 'one')@ forms an abelian group,
34 -- called the 'Multiplicative' group of 'f'.
36 -- * ('*') is associative:
37 -- @(a'*'b)'*'c == a'*'(b'*'c)@ and
38 -- @a'*'(b'*'c) == (a'*'b)'*'c@.
40 -- * ('*') and ('+') are both commutative:
41 -- @a'*'b == b'*'a@ and
44 -- * ('*') and ('+') are both left and right distributive:
45 -- @a'*'(b'+'c) == (a'*'b) '+' (a'*'c)@ and
46 -- @(a'+'b)'*'c == (a'*'c) '+' (b'*'c)@
48 -- The 'Integer' is always within @[0..'fieldCharac'-1]@.
49 newtype F p = F { unF :: Integer }
50 deriving (Eq,Ord,Show)
52 inF :: forall p i. PrimeField p => Integral i => i -> F p
53 inF i = F (abs (fromIntegral i `mod` fieldCharac @p))
54 where abs x | x < 0 = x + fieldCharac @p
57 instance PrimeField p => Additive (F p) where
59 F x + F y = F ((x + y) `mod` fieldCharac @p)
60 instance PrimeField p => Negable (F p) where
61 neg (F x) | x == 0 = zero
62 | otherwise = F (N.negate x + fieldCharac @p)
63 instance PrimeField p => Multiplicative (F p) where
65 -- | Because 'fieldCharac' is prime,
66 -- all elements of the field are invertible modulo 'fieldCharac'.
67 F x * F y = F ((x * y) `mod` fieldCharac @p)
68 instance PrimeField p => Random.Random (F p) where
69 randomR (F lo, F hi) =
70 first F . Random.randomR
71 (max 0 lo, min hi (fieldCharac @p - 1))
72 random = first F . Random.randomR (0, fieldCharac @p - 1)
74 -- ** Class 'PrimeField'
75 -- | Parameter for a prime field.
76 class PrimeField p where
77 -- | The prime number characteristic of a 'PrimeField'.
79 -- ElGamal's hardness to decrypt requires a large prime number
80 -- to form the 'Multiplicative' 'SubGroup'.
81 fieldCharac :: Integer
83 -- ** Class 'Additive'
84 class Additive a where
86 (+) :: a -> a -> a; infixl 6 +
87 sum :: Foldable f => f a -> a
89 instance Additive Integer where
92 instance Additive Int where
96 -- *** Class 'Negable'
97 class Additive a => Negable a where
99 (-) :: a -> a -> a; infixl 6 -
101 instance Negable Integer where
103 instance Negable Int where
106 -- ** Class 'Multiplicative'
107 class Multiplicative a where
109 (*) :: a -> a -> a; infixl 7 *
110 instance Multiplicative Integer where
113 instance Multiplicative Int where
117 -- ** Class 'Invertible'
118 class Multiplicative a => Invertible a where
120 (/) :: a -> a -> a; infixl 7 /
124 -- | The type of the elements of a 'Multiplicative' 'SubGroup' of a 'PrimeField'.
125 newtype G q = G { unG :: F (P q) }
126 deriving (Eq,Ord,Show)
128 -- | @('intG' g)@ returns the element of the 'SubGroup' 'g'
129 -- as an 'Integer' within @[0..'fieldCharac'-1]@.
130 intG :: SubGroup q => G q -> Integer
133 instance (SubGroup q, Multiplicative (F (P q))) => Multiplicative (G q) where
135 G x * G y = G (x * y)
136 instance (SubGroup q, Multiplicative (F (P q))) => Invertible (G q) where
137 -- | NOTE: add 'groupOrder' so the exponent given to (^) is positive.
138 inv = (^ (E (neg one + groupOrder @q)))
140 -- ** Class 'SubGroupOfPrimeField'
141 -- | A 'SubGroup' of a 'PrimeField'.
142 -- Used for signing (Schnorr) and encrypting (ElGamal).
145 , Multiplicative (F (P q))
146 ) => SubGroup q where
147 -- | Setting 'q' determines 'p', equals to @'P' q@.
149 -- | A generator of the 'SubGroup'.
150 -- NOTE: since @F p@ is a 'PrimeField',
151 -- the 'Multiplicative' 'SubGroup' is cyclic,
152 -- and there are phi('fieldCharac'-1) many choices for the generator of the group,
153 -- where phi is the Euler totient function.
155 -- | The order of the 'SubGroup'.
157 -- WARNING: 'groupOrder' MUST be a prime number dividing @('fieldCharac'-1)@
158 -- to ensure that ensures that ElGamal is secure in terms
159 -- of the DDH assumption.
160 groupOrder :: F (P q)
162 -- | 'groupGenInverses' returns the infinite list
163 -- of 'inv'erse powers of 'groupGen':
164 -- @['groupGen' '^' 'neg' i | i <- [0..]]@,
165 -- but by computing each value from the previous one.
167 -- NOTE: 'groupGenInverses' is in the 'SubGroup' class in order to keep
168 -- computed terms in memory accross calls to 'groupGenInverses'.
170 -- Used by 'elgamalDisjProve'.
171 groupGenInverses :: [G q]
172 groupGenInverses = go one
174 go g = g : go (g * invGen)
175 invGen = inv groupGen
177 -- | @('hash' prefix gs)@ returns as a number in @('F' p)@
178 -- the SHA256 of the given 'prefix' prefixing the decimal representation
179 -- of given 'SubGroup' elements 'gs', each one postfixed with a comma (",").
182 BS.ByteString -> [G q] -> E q
184 let s = prefix <> foldMap (\(G (F i)) -> fromString (show i) <> fromString ",") gs in
185 let h = ByteArray.convert (Crypto.hashWith Crypto.SHA256 s) in
186 inE (BS.foldl' (\acc b -> acc`shiftL`3 + fromIntegral b) (0::Integer) h)
189 -- | An exponent of a (necessarily cyclic) 'SubGroup' of a 'PrimeField'.
190 -- The value is always in @[0..'groupOrder'-1]@.
191 newtype E q = E { unE :: F (P q) }
192 deriving (Eq,Ord,Show)
194 inE :: forall q i. SubGroup q => Integral i => i -> E q
195 inE i = E (F (abs (fromIntegral i `mod` unF (groupOrder @q))))
196 where abs x | x < 0 = x + unF (groupOrder @q)
199 intE :: forall q. SubGroup q => E q -> Integer
202 instance (SubGroup q, Additive (F (P q))) => Additive (E q) where
204 E (F x) + E (F y) = E (F ((x + y) `mod` unF (groupOrder @q)))
205 instance (SubGroup q, Negable (F (P q))) => Negable (E q) where
206 neg (E (F x)) | x == 0 = zero
207 | otherwise = E (F (neg x + unF (groupOrder @q)))
208 instance (SubGroup q, Multiplicative (F (P q))) => Multiplicative (E q) where
210 E (F x) * E (F y) = E (F ((x * y) `mod` unF (groupOrder @q)))
211 instance SubGroup q => Random.Random (E q) where
212 randomR (E (F lo), E (F hi)) =
213 first (E . F) . Random.randomR
214 (max 0 lo, min hi (unF (groupOrder @q) - 1))
215 random = first (E . F) . Random.randomR (0, unF (groupOrder @q) - 1)
216 instance SubGroup q => Enum (E q) where
218 fromEnum = fromIntegral . intE
219 enumFromTo lo hi = List.unfoldr
220 (\i -> if i<=hi then Just (i, i+one) else Nothing) lo
223 -- | @(b '^' e)@ returns the modular exponentiation of base 'b' by exponent 'e'.
224 (^) :: SubGroup q => G q -> E q -> G q
227 | otherwise = t * (b*b) ^ E (F (e`shiftR`1))
232 -- * Type 'RandomGen'
233 type RandomGen = Random.RandomGen
242 randomR i = S.StateT $ return . Random.randomR (zero, i-one)
251 random = S.StateT $ return . Random.random
255 -- ** Type 'WeakParams'
256 -- | Weak parameters for debugging purposes only.
258 instance PrimeField WeakParams where
260 instance SubGroup WeakParams where
261 type P WeakParams = WeakParams
265 -- ** Type 'BeleniosParams'
266 -- | Parameters used in Belenios.
267 -- A 2048-bit 'fieldCharac' of a 'PrimeField',
268 -- with a 256-bit 'groupOrder' for a 'Multiplicative' 'SubGroup'
269 -- generated by 'groupGen',
271 instance PrimeField BeleniosParams where
272 fieldCharac = 20694785691422546401013643657505008064922989295751104097100884787057374219242717401922237254497684338129066633138078958404960054389636289796393038773905722803605973749427671376777618898589872735865049081167099310535867780980030790491654063777173764198678527273474476341835600035698305193144284561701911000786737307333564123971732897913240474578834468260652327974647951137672658693582180046317922073668860052627186363386088796882120769432366149491002923444346373222145884100586421050242120365433561201320481118852408731077014151666200162313177169372189248078507711827842317498073276598828825169183103125680162072880719
273 instance SubGroup BeleniosParams where
274 type P BeleniosParams = BeleniosParams
275 groupGen = G (F 2402352677501852209227687703532399932712287657378364916510075318787663274146353219320285676155269678799694668298749389095083896573425601900601068477164491735474137283104610458681314511781646755400527402889846139864532661215055797097162016168270312886432456663834863635782106154918419982534315189740658186868651151358576410138882215396016043228843603930989333662772848406593138406010231675095763777982665103606822406635076697764025346253773085133173495194248967754052573659049492477631475991575198775177711481490920456600205478127054728238140972518639858334115700568353695553423781475582491896050296680037745308460627)
276 groupOrder = F 78571733251071885079927659812671450121821421258408794611510081919805623223441