1 module Protocol.Arith where
3 import Control.Arrow (first)
4 import Control.Monad (Monad(..))
7 import Data.Eq (Eq(..))
8 import Data.Foldable (Foldable(..))
9 import Data.Function (($), (.), on)
11 import Data.Maybe (Maybe(..))
12 import Data.Ord (Ord(..), Ordering(..))
13 import Data.Semigroup (Semigroup(..))
14 import Data.String (IsString(..))
15 import Prelude (Integer, Integral(..), fromIntegral, Enum(..))
16 import Text.Show (Show(..))
17 import qualified Control.Monad.Trans.State.Strict as S
18 import qualified Crypto.Hash as Crypto
19 import qualified Data.ByteArray as ByteArray
20 import qualified Data.ByteString as BS
21 import qualified Data.List as List
22 import qualified Prelude as N
23 import qualified System.Random as Random
26 -- | The type of the elements of a 'PrimeField'.
28 -- A field must satisfy the following properties:
30 -- * @(f, ('+'), 'zero')@ forms an abelian group,
31 -- called the 'Additive' group of 'f'.
33 -- * @('NonNull' f, ('*'), 'one')@ forms an abelian group,
34 -- called the 'Multiplicative' group of 'f'.
36 -- * ('*') is associative:
37 -- @(a'*'b)'*'c == a'*'(b'*'c)@ and
38 -- @a'*'(b'*'c) == (a'*'b)'*'c@.
40 -- * ('*') and ('+') are both commutative:
41 -- @a'*'b == b'*'a@ and
44 -- * ('*') and ('+') are both left and right distributive:
45 -- @a'*'(b'+'c) == (a'*'b) '+' (a'*'c)@ and
46 -- @(a'+'b)'*'c == (a'*'c) '+' (b'*'c)@
48 -- The 'Integer' is always within @[0..'fieldCharac'-1]@.
49 newtype F p = F { unF :: Integer }
50 deriving (Eq,Ord,Show)
52 inF :: forall p i. PrimeField p => Integral i => i -> F p
53 inF i = F (abs (fromIntegral i `mod` fieldCharac @p))
54 where abs x | x < 0 = x + fieldCharac @p
57 instance PrimeField p => Additive (F p) where
59 F x + F y = F ((x + y) `mod` fieldCharac @p)
60 instance PrimeField p => Negable (F p) where
61 neg (F x) = F (N.negate x + fieldCharac @p)
62 instance PrimeField p => Multiplicative (F p) where
64 -- | Because 'fieldCharac' is prime,
65 -- all elements of the field are invertible modulo 'fieldCharac'.
66 F x * F y = F ((x * y) `mod` fieldCharac @p)
67 instance PrimeField p => Random.Random (F p) where
68 randomR (F lo, F hi) =
69 first F . Random.randomR
70 (max 0 lo, min hi (fieldCharac @p - 1))
71 random = first F . Random.randomR (0, fieldCharac @p - 1)
73 -- ** Class 'PrimeField'
74 -- | Parameter for a prime field.
75 class PrimeField p where
76 -- | The prime number characteristic of a 'PrimeField'.
78 -- ElGamal's hardness to decrypt requires a large prime number
79 -- to form the 'Multiplicative' 'SubGroup'.
80 fieldCharac :: Integer
82 -- ** Class 'Additive'
83 class Additive a where
85 (+) :: a -> a -> a; infixl 6 +
86 instance Additive Integer where
89 instance Additive Int where
93 -- *** Class 'Negable'
94 class Additive a => Negable a where
96 (-) :: a -> a -> a; infixl 6 -
98 instance Negable Integer where
100 instance Negable Int where
103 -- ** Class 'Multiplicative'
104 class Multiplicative a where
106 (*) :: a -> a -> a; infixl 7 *
107 instance Multiplicative Integer where
110 instance Multiplicative Int where
114 -- ** Class 'Invertible'
115 class Multiplicative a => Invertible a where
117 (/) :: a -> a -> a; infixl 7 /
121 -- | The type of the elements of a 'Multiplicative' 'SubGroup' of a 'PrimeField'.
122 newtype G q = G { unG :: F (P q) }
123 deriving (Eq,Ord,Show)
125 -- | @('intG' g)@ returns the element of the 'SubGroup' 'g'
126 -- as an 'Integer' within @[0..'fieldCharac'-1]@.
127 intG :: SubGroup q => G q -> Integer
130 instance (SubGroup q, Multiplicative (F (P q))) => Multiplicative (G q) where
132 G x * G y = G (x * y)
133 instance (SubGroup q, Multiplicative (F (P q))) => Invertible (G q) where
134 -- | NOTE: add 'groupOrder' so the exponent given to (^) is positive.
135 inv = (^ (E (neg one + groupOrder @q)))
137 -- ** Class 'SubGroupOfPrimeField'
138 -- | A 'SubGroup' of a 'PrimeField'.
139 -- Used for signing (Schnorr) and encrypting (ElGamal).
142 , Multiplicative (F (P q))
143 ) => SubGroup q where
144 -- | Setting 'q' determines 'p', equals to @'P' q@.
146 -- | A generator of the 'SubGroup'.
147 -- NOTE: since @F p@ is a 'PrimeField',
148 -- the 'Multiplicative' 'SubGroup' is cyclic,
149 -- and there are phi('fieldCharac'-1) many choices for the generator of the group,
150 -- where phi is the Euler totient function.
152 -- | The order of the 'SubGroup'.
154 -- WARNING: 'groupOrder' MUST be a prime number dividing @('fieldCharac'-1)@
155 -- to ensure that ensures that ElGamal is secure in terms
156 -- of the DDH assumption.
157 groupOrder :: F (P q)
159 -- | 'groupGenInverses' returns the infinite list
160 -- of 'inv'erse powers of 'groupGen':
161 -- @['groupGen' '^' 'neg' i | i <- [0..]]@,
162 -- but by computing each value from the previous one.
164 -- NOTE: 'groupGenInverses' is in the 'SubGroup' class in order to keep
165 -- computed terms in memory accross calls to 'groupGenInverses'.
167 -- Used by 'elgamalDisjProve'.
168 groupGenInverses :: [G q]
169 groupGenInverses = go one
171 go g = g : go (g * invGen)
172 invGen = inv groupGen
174 -- | @(hash prefix gs)@ returns as a number in @('F' p)@
175 -- the SHA256 of the given 'prefix' prefixing the decimal representation
176 -- of given 'SubGroup' elements 'gs', each one postfixed with a comma (",").
179 BS.ByteString -> [G q] -> E q
181 let s = prefix <> foldMap (\x -> fromString (show (unF (unG x))) <> fromString ",") gs in
182 let h = ByteArray.convert (Crypto.hashWith Crypto.SHA256 s) in
183 inE (BS.foldl' (\acc b -> acc`shiftL`3 + fromIntegral b) (0::Integer) h)
186 -- | An exponent of a (necessarily cyclic) 'SubGroup' of a 'PrimeField'.
187 -- The value is always in @[0..'groupOrder'-1]@.
188 newtype E q = E { unE :: F (P q) }
189 deriving (Eq,Ord,Show)
191 inE :: forall q i. SubGroup q => Integral i => i -> E q
192 inE i = E (F (abs (fromIntegral i `mod` unF (groupOrder @q))))
193 where abs x | x < 0 = x + unF (groupOrder @q)
196 intE :: forall q. SubGroup q => E q -> Integer
199 instance (SubGroup q, Additive (F (P q))) => Additive (E q) where
201 E (F x) + E (F y) = E (F ((x + y) `mod` unF (groupOrder @q)))
202 instance (SubGroup q, Negable (F (P q))) => Negable (E q) where
203 neg (E (F x)) = E (F (neg x + unF (groupOrder @q)))
204 instance (SubGroup q, Multiplicative (F (P q))) => Multiplicative (E q) where
206 E (F x) * E (F y) = E (F ((x * y) `mod` unF (groupOrder @q)))
207 instance SubGroup q => Random.Random (E q) where
208 randomR (E (F lo), E (F hi)) =
209 first (E . F) . Random.randomR
210 (max 0 lo, min hi (unF (groupOrder @q) - 1))
211 random = first (E . F) . Random.randomR (0, unF (groupOrder @q) - 1)
212 instance SubGroup q => Enum (E q) where
214 fromEnum = fromIntegral . intE
215 enumFromTo lo hi = List.unfoldr
216 (\i -> if i<=hi then Just (i, i+one) else Nothing) lo
219 -- | @(b '^' e)@ returns the modular exponentiation of base 'b' by exponent 'e'.
220 (^) :: SubGroup q => G q -> E q -> G q
223 | otherwise = t * (b*b) ^ E (F (e`shiftR`1))
228 -- * Type 'RandomGen'
229 type RandomGen = Random.RandomGen
238 randomR i = S.StateT $ return . Random.randomR (zero, i-one)
247 random = S.StateT $ return . Random.random
251 -- ** Type 'WeakParams'
252 -- | Weak parameters for debugging purposes only.
254 instance PrimeField WeakParams where
256 instance SubGroup WeakParams where
257 type P WeakParams = WeakParams
261 -- ** Type 'BeleniosParams'
262 -- | Parameters used in Belenios.
263 -- A 2048-bit 'fieldCharac' of a 'PrimeField',
264 -- with a 256-bit 'groupOrder' for a 'Multiplicative' 'SubGroup'
265 -- generated by 'groupGen',
267 instance PrimeField BeleniosParams where
268 fieldCharac = 20694785691422546401013643657505008064922989295751104097100884787057374219242717401922237254497684338129066633138078958404960054389636289796393038773905722803605973749427671376777618898589872735865049081167099310535867780980030790491654063777173764198678527273474476341835600035698305193144284561701911000786737307333564123971732897913240474578834468260652327974647951137672658693582180046317922073668860052627186363386088796882120769432366149491002923444346373222145884100586421050242120365433561201320481118852408731077014151666200162313177169372189248078507711827842317498073276598828825169183103125680162072880719
269 instance SubGroup BeleniosParams where
270 type P BeleniosParams = BeleniosParams
271 groupGen = G (F 2402352677501852209227687703532399932712287657378364916510075318787663274146353219320285676155269678799694668298749389095083896573425601900601068477164491735474137283104610458681314511781646755400527402889846139864532661215055797097162016168270312886432456663834863635782106154918419982534315189740658186868651151358576410138882215396016043228843603930989333662772848406593138406010231675095763777982665103606822406635076697764025346253773085133173495194248967754052573659049492477631475991575198775177711481490920456600205478127054728238140972518639858334115700568353695553423781475582491896050296680037745308460627)
272 groupOrder = F 78571733251071885079927659812671450121821421258408794611510081919805623223441