]> Git — Sourcephile - majurity.git/blob - hjugement-protocol/Protocol/Election.hs
protocol: polish import of modules
[majurity.git] / hjugement-protocol / Protocol / Election.hs
1 {-# LANGUAGE DataKinds #-}
2 {-# LANGUAGE GADTs #-}
3 {-# LANGUAGE OverloadedStrings #-}
4 module Protocol.Election where
5
6 import Control.Monad (Monad(..), join, mapM, zipWithM)
7 import Control.Monad.Morph (MFunctor(..))
8 import Control.Monad.Trans.Class (MonadTrans(..))
9 import Data.Bool
10 import Data.Either (either)
11 import Data.Eq (Eq(..))
12 import Data.Foldable (Foldable, foldMap, and)
13 import Data.Function (($), id, const)
14 import Data.Functor (Functor, (<$>))
15 import Data.Functor.Identity (Identity(..))
16 import Data.Maybe (Maybe(..), fromMaybe)
17 import Data.Ord (Ord(..))
18 import Data.Semigroup (Semigroup(..))
19 import Data.String (IsString(..))
20 import Data.Text (Text)
21 import Data.Traversable (Traversable(..))
22 import Data.Tuple (fst, snd, uncurry)
23 import GHC.Natural (minusNaturalMaybe)
24 import Numeric.Natural (Natural)
25 import Prelude (error, fromIntegral)
26 import Text.Show (Show(..))
27 import qualified Control.Monad.Trans.Except as Exn
28 import qualified Control.Monad.Trans.State.Strict as S
29 import qualified Data.ByteString as BS
30 import qualified Data.List as List
31
32 import Protocol.Arithmetic
33 import Protocol.Credential
34
35 -- * Type 'Encryption'
36 -- | ElGamal-like encryption.
37 -- Its security relies on the /Discrete Logarithm problem/.
38 --
39 -- Because ('groupGen' '^'encNonce '^'secKey '==' 'groupGen' '^'secKey '^'encNonce),
40 -- knowing @secKey@, one can divide 'encryption_vault' by @('encryption_nonce' '^'secKey)@
41 -- to decipher @('groupGen' '^'clear)@, then the @clear@ text must be small to be decryptable,
42 -- because it is encrypted as a power of 'groupGen' (hence the "-like" in "ElGamal-like")
43 -- to enable the additive homomorphism.
44 --
45 -- NOTE: Since @('encryption_vault' '*' 'encryption_nonce' '==' 'encryption_nonce' '^' (secKey '+' clear))@,
46 -- then: @(logBase 'encryption_nonce' ('encryption_vault' '*' 'encryption_nonce') '==' secKey '+' clear)@.
47 data Encryption q = Encryption
48 { encryption_nonce :: G q
49 -- ^ Public part of the randomness 'encNonce' used to 'encrypt' the 'clear' text,
50 -- equal to @('groupGen' '^'encNonce)@
51 , encryption_vault :: G q
52 -- ^ Encrypted 'clear' text, equal to @('pubKey' '^'r '*' 'groupGen' '^'clear)@
53 } deriving (Eq,Show)
54
55 -- | Additive homomorphism.
56 -- Using the fact that: @'groupGen' '^'x '*' 'groupGen' '^'y '==' 'groupGen' '^'(x'+'y)@.
57 instance SubGroup q => Additive (Encryption q) where
58 zero = Encryption one one
59 x+y = Encryption
60 (encryption_nonce x * encryption_nonce y)
61 (encryption_vault x * encryption_vault y)
62
63 -- *** Type 'EncryptionNonce'
64 type EncryptionNonce = E
65
66 -- | @('encrypt' pubKey clear)@ returns an ElGamal-like 'Encryption'.
67 --
68 -- WARNING: the secret encryption nonce (@encNonce@)
69 -- is returned alongside the 'Encryption'
70 -- in order to 'prove' the validity of the encrypted 'clear' text in 'proveEncryption',
71 -- but this secret @encNonce@ MUST be forgotten after that,
72 -- as it may be used to decipher the 'Encryption'
73 -- without the secret key associated with 'pubKey'.
74 encrypt ::
75 Monad m => RandomGen r => SubGroup q =>
76 PublicKey q -> E q ->
77 S.StateT r m (EncryptionNonce q, Encryption q)
78 encrypt pubKey clear = do
79 encNonce <- random
80 -- NOTE: preserve the 'encNonce' for 'prove' in 'proveEncryption'.
81 return $ (encNonce,)
82 Encryption
83 { encryption_nonce = groupGen^encNonce
84 , encryption_vault = pubKey ^encNonce * groupGen^clear
85 }
86
87 -- * Type 'Proof'
88 -- | 'Proof' of knowledge of a discrete logarithm:
89 -- @(secret == logBase base (base^secret))@.
90 data Proof q = Proof
91 { proof_challenge :: Challenge q
92 -- ^ 'Challenge' sent by the verifier to the prover
93 -- to ensure that the prover really has knowledge
94 -- of the secret and is not replaying.
95 -- Actually, 'proof_challenge' is not sent to the prover,
96 -- but derived from the prover's 'Commitment's and statements
97 -- with a collision resistant 'hash'.
98 -- Hence the prover cannot chose the 'proof_challenge' to his/her liking.
99 , proof_response :: E q
100 -- ^ A discrete logarithm sent by the prover to the verifier,
101 -- as a response to 'proof_challenge'.
102 --
103 -- If the verifier observes that @('proof_challenge' '==' 'hash' statement [commitment])@
104 -- where:
105 --
106 -- * @statement@ is a serialization of a tag, 'base' and 'basePowSec',
107 -- * @(commitment '==' 'commit' proof base basePowSec '=='
108 -- base '^' 'proof_response' '*' basePowSec '^' 'proof_challenge')@,
109 -- * and @(basePowSec '==' base'^'sec)@,
110 --
111 -- then with overwhelming probability due to the 'hash' function:
112 -- @(commitment '==' base'^'nonce)@.
113 -- Therefore by expanding 'commitment':
114 -- @('proof_response' '==' logBase base (base'^'nonce) '-' logBase basePowSec (basePowSec '^' 'proof_challenge'))@,
115 -- which means that the prover must have known 'nonce' and 'sec'
116 -- to compute 'proof_response' efficiently with:
117 -- @('proof_response' '==' nonce '-' sec '*' 'proof_challenge')@,
118 --
119 -- The 'nonce' is introduced to ensure each 'prove' does not reveal
120 -- any information regarding the prover's secret 'sec',
121 -- by being randomly chosen by the prover.
122 } deriving (Eq,Show)
123
124 -- ** Type 'ZKP'
125 -- | Zero-knowledge proof
126 --
127 -- DOC: Mihir Bellare and Phillip Rogaway. Random oracles are practical:
128 -- A paradigm for designing efficient protocols. In ACM-CCS’93, 1993.
129 --
130 -- DOC: Pierrick Gaudry. <https://hal.inria.fr/hal-01576379 Some ZK security proofs for Belenios>, 2017.
131 newtype ZKP = ZKP BS.ByteString
132
133 -- ** Type 'Challenge'
134 type Challenge = E
135
136 -- ** Type 'Oracle'
137 -- An 'Oracle' returns the 'Challenge' of the 'Commitment's
138 -- by 'hash'ing them (eventually with other 'Commitment's).
139 --
140 -- Used in 'prove' it enables a Fiat-Shamir transformation
141 -- of an /interactive zero-knowledge/ (IZK) proof
142 -- into a /non-interactive zero-knowledge/ (NIZK) proof.
143 -- That is to say that the verifier does not have
144 -- to send a 'Challenge' to the prover.
145 -- Indeed, the prover now handles the 'Challenge'
146 -- which becomes a (collision resistant) 'hash'
147 -- of the prover's commitments (and statements to be a stronger proof).
148 type Oracle list q = list (Commitment q) -> Challenge q
149
150 -- | @('prove' sec commitBases oracle)@
151 -- returns a 'Proof' that @sec@ is known.
152 --
153 -- The 'Oracle' is given the 'commitBases'
154 -- raised to the power of the secret nonce of the 'Proof',
155 -- as those are the 'commitBases' that the verifier will obtain
156 -- when composing the 'proof_challenge' and 'proof_response' together
157 -- (in 'commit').
158 --
159 -- NOTE: 'sec' is @secKey@ in 'signature_proof' or @encNonce@ in 'proveEncryption'.
160 --
161 -- WARNING: for 'prove' to be a so-called /strong Fiat-Shamir transformation/ (not a weak):
162 -- the statement must be included in the 'hash' (not only the commitments).
163 --
164 -- NOTE: a 'random' @nonce@ is used to ensure each 'prove'
165 -- does not reveal any information regarding the secret 'sec'.
166 prove ::
167 Monad m => RandomGen r => SubGroup q => Functor list =>
168 E q -> list (Commitment q) -> Oracle list q -> S.StateT r m (Proof q)
169 prove sec commitBases oracle = do
170 nonce <- random
171 let proof_challenge = oracle $ (^ nonce) <$> commitBases
172 return Proof
173 { proof_challenge
174 , proof_response = nonce - sec*proof_challenge
175 }
176
177 -- ** Type 'Commitment'
178 type Commitment = G
179
180 -- | @('commit' proof base basePowSec)@ returns a 'Commitment'
181 -- from the given 'Proof' with the knowledge of the verifier.
182 commit :: SubGroup q => Proof q -> G q -> G q -> Commitment q
183 commit Proof{..} base basePowSec =
184 base^proof_response *
185 basePowSec^proof_challenge
186 -- NOTE: Contrary to some textbook presentations,
187 -- @('*')@ is used instead of @('/')@ to avoid the performance cost
188 -- of a modular exponentiation @('^' ('groupOrder' '-' 'one'))@,
189 -- this is compensated by using @('-')@ instead of @('+')@ in 'prove'.
190 {-# INLINE commit #-}
191
192 -- * Type 'Disjunction'
193 -- | A 'Disjunction' is an 'inv'ersed @('groupGen' '^'opinion)@
194 -- it's used in 'proveEncryption' to generate a 'Proof'
195 -- that an 'encryption_vault' contains a given @('groupGen' '^'opinion)@,
196 type Disjunction = G
197
198 booleanDisjunctions :: SubGroup q => [Disjunction q]
199 booleanDisjunctions = List.take 2 groupGenInverses
200
201 intervalDisjunctions :: SubGroup q => Opinion q -> Opinion q -> [Disjunction q]
202 intervalDisjunctions mini maxi =
203 List.genericTake (fromMaybe 0 $ (natE maxi + 1)`minusNaturalMaybe`natE mini) $
204 List.genericDrop (natE mini) $
205 groupGenInverses
206
207 -- ** Type 'Opinion'
208 -- | Index of a 'Disjunction' within a list of them.
209 -- It is encrypted as an 'E'xponent by 'encrypt'.
210 type Opinion = E
211
212 -- ** Type 'DisjProof'
213 -- | A list of 'Proof's to prove that the 'Opinion' within an 'Encryption'
214 -- is indexing a 'Disjunction' within a list of them,
215 -- without knowing which 'Opinion' it is.
216 newtype DisjProof q = DisjProof [Proof q]
217 deriving (Eq,Show)
218
219 -- * 'proveEncryption' and 'verifyEncryption'
220 -- | @('proveEncryption' elecPubKey voterZKP disjs opin (encNonce, enc))@
221 -- returns a 'DisjProof' that 'enc' 'encrypt's
222 -- one of the 'Disjunction's within 'disjs',
223 -- without revealing which one it is.
224 --
225 -- A /NIZK Disjunctive Chaum Pedersen Logarithm Equality/ is used.
226 proveEncryption ::
227 forall m r q.
228 Monad m => RandomGen r => SubGroup q =>
229 PublicKey q -> ZKP ->
230 [Disjunction q] -> Opinion q ->
231 (EncryptionNonce q, Encryption q) ->
232 S.StateT r (Exn.ExceptT ErrorProve m) (DisjProof q)
233 proveEncryption elecPubKey voterZKP disjs opinion (encNonce, enc)
234 | (prevDisjs, _indexedDisj:nextDisjs) <-
235 List.genericSplitAt (natE opinion) disjs = do
236 -- Fake proofs for all values except the correct one.
237 prevFakes <- fakeProof `mapM` prevDisjs
238 nextFakes <- fakeProof `mapM` nextDisjs
239 let prevProofs = fst <$> prevFakes
240 let nextProofs = fst <$> nextFakes
241 let challengeSum =
242 sum (proof_challenge <$> prevProofs) +
243 sum (proof_challenge <$> nextProofs)
244 let statement = encryptionStatement voterZKP enc
245 correctProof <- prove encNonce [groupGen, elecPubKey] $
246 -- 'Oracle'
247 \correctCommitments ->
248 let commitments =
249 foldMap snd prevFakes <>
250 correctCommitments <>
251 foldMap snd nextFakes in
252 hash statement commitments - challengeSum
253 return $ DisjProof $ prevProofs <> (correctProof : nextProofs)
254 | otherwise = lift $ Exn.throwE $
255 ErrorProve_InvalidOpinion
256 (fromIntegral $ List.length disjs)
257 (natE opinion)
258 where
259 fakeProof :: Disjunction q -> S.StateT r (Exn.ExceptT ErrorProve m) (Proof q, [Commitment q])
260 fakeProof disj = do
261 -- Returns 'Commitment's verifiables by the verifier,
262 -- but computed from random 'proof_challenge' and 'proof_response'
263 -- instead of correct ones.
264 proof_challenge <- random
265 proof_response <- random
266 let proof = Proof{..}
267 return (proof, encryptionCommitments elecPubKey enc (disj, proof))
268
269 verifyEncryption ::
270 Monad m =>
271 SubGroup q =>
272 PublicKey q -> ZKP ->
273 [Disjunction q] ->
274 (Encryption q, DisjProof q) ->
275 Exn.ExceptT ErrorValidateEncryption m Bool
276 verifyEncryption elecPubKey voterZKP disjs (enc, DisjProof proofs)
277 | List.length proofs /= List.length disjs =
278 Exn.throwE $ ErrorValidateEncryption_InvalidProofLength
279 (fromIntegral $ List.length proofs)
280 (fromIntegral $ List.length disjs)
281 | otherwise = return $ challengeSum == hash (encryptionStatement voterZKP enc) commitments
282 where
283 challengeSum = sum (proof_challenge <$> proofs)
284 commitments = foldMap (encryptionCommitments elecPubKey enc) (List.zip disjs proofs)
285
286 -- ** Hashing
287 encryptionStatement :: SubGroup q => ZKP -> Encryption q -> BS.ByteString
288 encryptionStatement (ZKP voterZKP) Encryption{..} =
289 "prove|"<>voterZKP<>"|"<>
290 fromString (show (natG encryption_nonce))<>","<>
291 fromString (show (natG encryption_vault))<>"|"
292 -- NOTE: the commitment base 'elecPubKey' is notably absent here
293 -- despite it being used in 'encryptionCommitments',
294 -- maybe this is not necessary because it is already known
295 -- by every participant.
296
297 -- | @('encryptionCommitments' elecPubKey enc (disj,proof))@
298 -- returns the 'Commitment's with only the knowledge of the verifier.
299 --
300 -- The 'Proof' comes from 'prove' of @fakeProof@ in 'proveEncryption'.
301 encryptionCommitments ::
302 SubGroup q =>
303 PublicKey q -> Encryption q ->
304 (Disjunction q, Proof q) -> [G q]
305 encryptionCommitments elecPubKey Encryption{..} (disj, proof) =
306 [ commit proof groupGen encryption_nonce
307 -- == groupGen ^ nonce if 'Proof' comes from 'prove'
308 , commit proof elecPubKey (encryption_vault*disj)
309 -- == elecPubKey ^ nonce if 'Proof' comes from 'prove'
310 -- and 'encryption_vault' encrypts (- logBase groupGen disj).
311 ]
312
313 -- ** Type 'ErrorProve'
314 -- | Error raised by 'proveEncryption'.
315 data ErrorProve
316 = ErrorProve_InvalidOpinion Natural Natural
317 -- ^ When the opinion is not within the number of 'Disjunction's.
318 deriving (Eq,Show)
319
320 -- ** Type 'ErrorValidateEncryption'
321 -- | Error raised by 'verifyEncryption'.
322 data ErrorValidateEncryption
323 = ErrorValidateEncryption_InvalidProofLength Natural Natural
324 -- ^ When the number of proofs is different than
325 -- the number of 'Disjunction's.
326 deriving (Eq,Show)
327
328 -- * Type 'Question'
329 data Question q = Question
330 { question_text :: Text
331 , question_choices :: [Text]
332 , question_mini :: Opinion q
333 , question_maxi :: Opinion q
334 -- , question_blank :: Maybe Bool
335 } deriving (Eq, Show)
336
337 -- * Type 'Answer'
338 data Answer q = Answer
339 { answer_opinions :: [(Encryption q, DisjProof q)]
340 -- ^ Encrypted 'Opinion' for each 'question_choices'
341 -- with a 'DisjProof' that they belong to [0,1].
342 , answer_sumProof :: DisjProof q
343 -- ^ Proofs that the sum of the 'Opinon's encrypted in 'answer_opinions'
344 -- is an element of @[mini..maxi]@.
345 -- , answer_blankProof ::
346 } deriving (Eq,Show)
347
348 -- | @('encryptAnswer' elecPubKey zkp quest opinions)@
349 -- returns an 'Answer' validable by 'verifyAnswer',
350 -- unless an 'ErrorAnswer' is returned.
351 encryptAnswer ::
352 Monad m => RandomGen r => SubGroup q =>
353 PublicKey q -> ZKP ->
354 Question q -> [Bool] ->
355 S.StateT r (Exn.ExceptT ErrorAnswer m) (Answer q)
356 encryptAnswer elecPubKey zkp Question{..} opinionsBools
357 | not (question_mini <= opinionsSum && opinionsSum <= question_maxi) =
358 lift $ Exn.throwE $
359 ErrorAnswer_WrongSumOfOpinions
360 (natE opinionsSum)
361 (natE question_mini)
362 (natE question_maxi)
363 | List.length opinions /= List.length question_choices =
364 lift $ Exn.throwE $
365 ErrorAnswer_WrongNumberOfOpinions
366 (fromIntegral $ List.length opinions)
367 (fromIntegral $ List.length question_choices)
368 | otherwise = do
369 encryptions <- encrypt elecPubKey `mapM` opinions
370 hoist (Exn.withExceptT (\case
371 ErrorProve_InvalidOpinion{} -> error "encryptAnswer: impossible happened"
372 )) $ do
373 individualProofs <- zipWithM
374 (proveEncryption elecPubKey zkp booleanDisjunctions)
375 opinions encryptions
376 sumProof <- proveEncryption elecPubKey zkp
377 (intervalDisjunctions question_mini question_maxi)
378 (opinionsSum - question_mini)
379 ( sum (fst <$> encryptions) -- NOTE: sum the 'encNonce's
380 , sum (snd <$> encryptions) -- NOTE: sum the 'Encryption's
381 )
382 return $ Answer
383 { answer_opinions = List.zip
384 (snd <$> encryptions) -- NOTE: drop encNonce
385 individualProofs
386 , answer_sumProof = sumProof
387 }
388 where
389 opinionsSum = sum opinions
390 opinions = (\o -> if o then one else zero) <$> opinionsBools
391
392 verifyAnswer ::
393 SubGroup q =>
394 PublicKey q -> ZKP ->
395 Question q -> Answer q -> Bool
396 verifyAnswer elecPubKey zkp Question{..} Answer{..}
397 | List.length question_choices /= List.length answer_opinions = False
398 | otherwise = either (const False) id $ Exn.runExcept $ do
399 validOpinions <-
400 verifyEncryption elecPubKey zkp booleanDisjunctions
401 `traverse` answer_opinions
402 validSum <- verifyEncryption elecPubKey zkp
403 (intervalDisjunctions question_mini question_maxi)
404 ( sum (fst <$> answer_opinions)
405 , answer_sumProof )
406 return (and validOpinions && validSum)
407
408 -- ** Type 'ErrorAnswer'
409 -- | Error raised by 'encryptAnswer'.
410 data ErrorAnswer
411 = ErrorAnswer_WrongNumberOfOpinions Natural Natural
412 -- ^ When the number of opinions is different than
413 -- the number of choices ('question_choices').
414 | ErrorAnswer_WrongSumOfOpinions Natural Natural Natural
415 -- ^ When the sum of opinions is not within the bounds
416 -- of 'question_mini' and 'question_maxi'.
417 deriving (Eq,Show)
418
419 -- * Type 'Election'
420 data Election q = Election
421 { election_name :: Text
422 , election_description :: Text
423 , election_publicKey :: PublicKey q
424 , election_questions :: [Question q]
425 , election_uuid :: UUID
426 , election_hash :: Hash -- TODO: serialize to JSON to calculate this
427 } deriving (Eq,Show)
428
429 -- ** Type 'Hash'
430 newtype Hash = Hash Text
431 deriving (Eq,Ord,Show)
432
433 -- * Type 'Ballot'
434 data Ballot q = Ballot
435 { ballot_answers :: [Answer q]
436 , ballot_signature :: Maybe (Signature q)
437 , ballot_election_uuid :: UUID
438 , ballot_election_hash :: Hash
439 }
440
441 -- | @('encryptBallot' elec ('Just' secKey) opinionsByQuest)@
442 -- returns a 'Ballot' signed by 'secKey' (the voter's secret key)
443 -- where 'opinionsByQuest' is a list of 'Opinion's
444 -- on each 'question_choices' of each 'election_questions'.
445 encryptBallot ::
446 Monad m => RandomGen r => SubGroup q =>
447 Election q -> Maybe (SecretKey q) -> [[Bool]] ->
448 S.StateT r (Exn.ExceptT ErrorBallot m) (Ballot q)
449 encryptBallot Election{..} secKeyMay opinionsByQuest
450 | List.length election_questions /= List.length opinionsByQuest =
451 lift $ Exn.throwE $
452 ErrorBallot_WrongNumberOfAnswers
453 (fromIntegral $ List.length opinionsByQuest)
454 (fromIntegral $ List.length election_questions)
455 | otherwise = do
456 let (voterKeys, voterZKP) =
457 case secKeyMay of
458 Nothing -> (Nothing, ZKP "")
459 Just secKey ->
460 ( Just (secKey, pubKey)
461 , ZKP (fromString (show (natG pubKey))) )
462 where pubKey = publicKey secKey
463 ballot_answers <-
464 hoist (Exn.withExceptT ErrorBallot_Answer) $
465 zipWithM (encryptAnswer election_publicKey voterZKP)
466 election_questions opinionsByQuest
467 ballot_signature <- case voterKeys of
468 Nothing -> return Nothing
469 Just (secKey, signature_publicKey) -> do
470 signature_proof <-
471 prove secKey (Identity groupGen) $
472 \(Identity commitment) ->
473 hash
474 -- NOTE: the order is unusual, the commitments are first
475 -- then comes the statement. Best guess is that
476 -- this is easier to code due to their respective types.
477 (signatureCommitments voterZKP commitment)
478 (signatureStatement ballot_answers)
479 return $ Just Signature{..}
480 return Ballot
481 { ballot_answers
482 , ballot_election_hash = election_hash
483 , ballot_election_uuid = election_uuid
484 , ballot_signature
485 }
486
487 verifyBallot :: SubGroup q => Election q -> Ballot q -> Bool
488 verifyBallot Election{..} Ballot{..} =
489 ballot_election_uuid == election_uuid &&
490 ballot_election_hash == election_hash &&
491 List.length election_questions == List.length ballot_answers &&
492 let (isValidSign, zkpSign) =
493 case ballot_signature of
494 Nothing -> (True, ZKP "")
495 Just Signature{..} ->
496 let zkp = ZKP (fromString (show (natG signature_publicKey))) in
497 (, zkp) $
498 proof_challenge signature_proof == hash
499 (signatureCommitments zkp (commit signature_proof groupGen signature_publicKey))
500 (signatureStatement ballot_answers)
501 in
502 and $ isValidSign :
503 List.zipWith (verifyAnswer election_publicKey zkpSign)
504 election_questions ballot_answers
505
506 -- ** Type 'Signature'
507 -- | Schnorr-like signature.
508 --
509 -- Used by each voter to sign his/her encrypted 'Ballot'
510 -- using his/her 'Credential',
511 -- in order to avoid ballot stuffing.
512 data Signature q = Signature
513 { signature_publicKey :: PublicKey q
514 -- ^ Verification key.
515 , signature_proof :: Proof q
516 }
517
518 -- *** Hashing
519
520 -- | @('signatureStatement' answers)@
521 -- returns the encrypted material to be signed:
522 -- all the 'encryption_nonce's and 'encryption_vault's of the given @answers@.
523 signatureStatement :: Foldable f => SubGroup q => f (Answer q) -> [G q]
524 signatureStatement =
525 foldMap $ \Answer{..} ->
526 (`foldMap` answer_opinions) $ \(Encryption{..}, _proof) ->
527 [encryption_nonce, encryption_vault]
528
529 -- | @('signatureCommitments' voterZKP commitment)@
530 signatureCommitments :: SubGroup q => ZKP -> Commitment q -> BS.ByteString
531 signatureCommitments (ZKP voterZKP) commitment =
532 "sig|"<>voterZKP<>"|"<>fromString (show (natG commitment))<>"|"
533
534 -- ** Type 'ErrorBallot'
535 -- | Error raised by 'encryptBallot'.
536 data ErrorBallot
537 = ErrorBallot_WrongNumberOfAnswers Natural Natural
538 -- ^ When the number of answers
539 -- is different than the number of questions.
540 | ErrorBallot_Answer ErrorAnswer
541 -- ^ When 'encryptAnswer' raised an 'ErrorAnswer'.
542 deriving (Eq,Show)