1 {-# OPTIONS_GHC -fno-warn-orphans #-}
2 module Protocol.Arithmetic where
4 import Control.Arrow (first)
5 import Control.Monad (Monad(..))
8 import Data.Eq (Eq(..))
9 import Data.Foldable (Foldable, foldl', foldMap)
10 import Data.Function (($), (.))
12 import Data.Maybe (Maybe(..))
13 import Data.Ord (Ord(..))
14 import Data.Semigroup (Semigroup(..))
15 import Data.String (IsString(..))
16 import Numeric.Natural (Natural)
17 import Prelude (Integer, Integral(..), fromIntegral, Enum(..))
18 import Text.Show (Show(..))
19 import qualified Control.Monad.Trans.State.Strict as S
20 import qualified Crypto.Hash as Crypto
21 import qualified Data.ByteArray as ByteArray
22 import qualified Data.ByteString as BS
23 import qualified Data.List as List
24 import qualified Prelude as N
25 import qualified System.Random as Random
28 -- | The type of the elements of a 'PrimeField'.
30 -- A field must satisfy the following properties:
32 -- * @(f, ('+'), 'zero')@ forms an abelian group,
33 -- called the 'Additive' group of 'f'.
35 -- * @('NonNull' f, ('*'), 'one')@ forms an abelian group,
36 -- called the 'Multiplicative' group of 'f'.
38 -- * ('*') is associative:
39 -- @(a'*'b)'*'c == a'*'(b'*'c)@ and
40 -- @a'*'(b'*'c) == (a'*'b)'*'c@.
42 -- * ('*') and ('+') are both commutative:
43 -- @a'*'b == b'*'a@ and
46 -- * ('*') and ('+') are both left and right distributive:
47 -- @a'*'(b'+'c) == (a'*'b) '+' (a'*'c)@ and
48 -- @(a'+'b)'*'c == (a'*'c) '+' (b'*'c)@
50 -- The 'Natural' is always within @[0..'fieldCharac'-1]@.
51 newtype F p = F { unF :: Natural }
52 deriving (Eq,Ord,Show)
54 inF :: forall p i. PrimeField p => Integral i => i -> F p
55 inF i = F (abs (fromIntegral i `mod` fieldCharac @p))
56 where abs x | x < 0 = x + fieldCharac @p
59 instance PrimeField p => Additive (F p) where
61 F x + F y = F ((x + y) `mod` fieldCharac @p)
62 instance PrimeField p => Negable (F p) where
63 neg (F x) | x == 0 = zero
64 | otherwise = F (fromIntegral (N.negate (toInteger x) + toInteger (fieldCharac @p)))
65 instance PrimeField p => Multiplicative (F p) where
67 -- | Because 'fieldCharac' is prime,
68 -- all elements of the field are invertible modulo 'fieldCharac'.
69 F x * F y = F ((x * y) `mod` fieldCharac @p)
70 instance PrimeField p => Random.Random (F p) where
71 randomR (F lo, F hi) =
72 first (F . fromIntegral) .
75 , toInteger hi`min`(toInteger (fieldCharac @p) - 1))
76 random = first (F . fromIntegral) . Random.randomR (0, toInteger (fieldCharac @p) - 1)
78 -- ** Class 'PrimeField'
79 -- | Parameter for a prime field.
80 class PrimeField p where
81 -- | The prime number characteristic of a 'PrimeField'.
83 -- ElGamal's hardness to decrypt requires a large prime number
84 -- to form the 'Multiplicative' 'SubGroup'.
85 fieldCharac :: Natural
87 -- ** Class 'Additive'
88 class Additive a where
90 (+) :: a -> a -> a; infixl 6 +
91 sum :: Foldable f => f a -> a
93 instance Additive Natural where
96 instance Additive Integer where
99 instance Additive Int where
103 -- *** Class 'Negable'
104 class Additive a => Negable a where
106 (-) :: a -> a -> a; infixl 6 -
108 instance Negable Integer where
110 instance Negable Int where
113 -- ** Class 'Multiplicative'
114 class Multiplicative a where
116 (*) :: a -> a -> a; infixl 7 *
117 instance Multiplicative Natural where
120 instance Multiplicative Integer where
123 instance Multiplicative Int where
127 -- ** Class 'Invertible'
128 class Multiplicative a => Invertible a where
130 (/) :: a -> a -> a; infixl 7 /
134 -- | The type of the elements of a 'Multiplicative' 'SubGroup' of a 'PrimeField'.
135 newtype G q = G { unG :: F (P q) }
136 deriving (Eq,Ord,Show)
138 -- | @('natG' g)@ returns the element of the 'SubGroup' 'g'
139 -- as an 'Natural' within @[0..'fieldCharac'-1]@.
140 natG :: SubGroup q => G q -> Natural
143 instance (SubGroup q, Multiplicative (F (P q))) => Multiplicative (G q) where
145 G x * G y = G (x * y)
146 instance (SubGroup q, Multiplicative (F (P q))) => Invertible (G q) where
147 -- | NOTE: add 'groupOrder' so the exponent given to (^) is positive.
148 inv = (^ E (neg one + groupOrder @q))
150 -- ** Class 'SubGroupOfPrimeField'
151 -- | A 'SubGroup' of a 'PrimeField'.
152 -- Used for signing (Schnorr) and encrypting (ElGamal).
155 , Multiplicative (F (P q))
156 ) => SubGroup q where
157 -- | Setting 'q' determines 'p', equals to @'P' q@.
159 -- | A generator of the 'SubGroup'.
160 -- NOTE: since @F p@ is a 'PrimeField',
161 -- the 'Multiplicative' 'SubGroup' is cyclic,
162 -- and there are phi('fieldCharac'-1) many choices for the generator of the group,
163 -- where phi is the Euler totient function.
165 -- | The order of the 'SubGroup'.
167 -- WARNING: 'groupOrder' MUST be a prime number dividing @('fieldCharac'-1)@
168 -- to ensure that ensures that ElGamal is secure in terms
169 -- of the DDH assumption.
170 groupOrder :: F (P q)
172 -- | 'groupGenInverses' returns the infinite list
173 -- of 'inv'erse powers of 'groupGen':
174 -- @['groupGen' '^' 'neg' i | i <- [0..]]@,
175 -- but by computing each value from the previous one.
177 -- NOTE: 'groupGenInverses' is in the 'SubGroup' class in order to keep
178 -- computed terms in memory accross calls to 'groupGenInverses'.
180 -- Used by 'validableEncryption'.
181 groupGenInverses :: [G q]
182 groupGenInverses = go one
184 go g = g : go (g * invGen)
185 invGen = inv groupGen
187 -- | @('hash' prefix gs)@ returns as a number in @('F' p)@
188 -- the SHA256 of the given 'prefix' prefixing the decimal representation
189 -- of given 'SubGroup' elements 'gs', each one postfixed with a comma (",").
191 -- Used by 'proveEncryption' and 'validateEncryption',
192 -- where the 'prefix' contains the 'statement' to be proven,
193 -- and the 'gs' contains the 'commitments'.
196 BS.ByteString -> [G q] -> E q
198 let s = prefix <> foldMap (\(G (F i)) -> fromString (show i) <> fromString ",") gs in
199 let h = ByteArray.convert (Crypto.hashWith Crypto.SHA256 s) in
200 inE (BS.foldl' (\acc b -> acc`shiftL`3 + fromIntegral b) (0::Natural) h)
203 -- | An exponent of a (necessarily cyclic) 'SubGroup' of a 'PrimeField'.
204 -- The value is always in @[0..'groupOrder'-1]@.
205 newtype E q = E { unE :: F (P q) }
206 deriving (Eq,Ord,Show)
208 inE :: forall q i. SubGroup q => Integral i => i -> E q
209 inE i = E (F (abs (fromIntegral i `mod` unF (groupOrder @q))))
210 where abs x | x < 0 = x + unF (groupOrder @q)
213 natE :: forall q. SubGroup q => E q -> Natural
216 instance (SubGroup q, Additive (F (P q))) => Additive (E q) where
218 E (F x) + E (F y) = E (F ((x + y) `mod` unF (groupOrder @q)))
219 instance (SubGroup q, Negable (F (P q))) => Negable (E q) where
220 neg (E (F x)) | x == 0 = zero
221 | otherwise = E (F (fromIntegral ( neg (toInteger x)
222 + toInteger (unF (groupOrder @q)) )))
223 instance (SubGroup q, Multiplicative (F (P q))) => Multiplicative (E q) where
225 E (F x) * E (F y) = E (F ((x * y) `mod` unF (groupOrder @q)))
226 instance SubGroup q => Random.Random (E q) where
227 randomR (E (F lo), E (F hi)) =
228 first (E . F . fromIntegral) .
231 , toInteger hi`min`(toInteger (unF (groupOrder @q)) - 1) )
233 first (E . F . fromIntegral) .
234 Random.randomR (0, toInteger (unF (groupOrder @q)) - 1)
235 instance SubGroup q => Enum (E q) where
237 fromEnum = fromIntegral . natE
238 enumFromTo lo hi = List.unfoldr
239 (\i -> if i<=hi then Just (i, i+one) else Nothing) lo
242 -- | @(b '^' e)@ returns the modular exponentiation of base 'b' by exponent 'e'.
243 (^) :: SubGroup q => G q -> E q -> G q
246 | otherwise = t * (b*b) ^ E (F (e`shiftR`1))
251 -- * Type 'RandomGen'
252 type RandomGen = Random.RandomGen
254 -- | @('randomR' i)@ returns a random integer in @[0..i-1]@.
262 randomR i = S.StateT $ return . Random.randomR (zero, i-one)
264 -- | @('random')@ returns a random integer
265 -- in the range determined by its type.
273 random = S.StateT $ return . Random.random
275 instance Random.Random Natural where
276 randomR (mini,maxi) =
277 first (fromIntegral::Integer -> Natural) .
278 Random.randomR (fromIntegral mini, fromIntegral maxi)
279 random = first (fromIntegral::Integer -> Natural) . Random.random
283 -- ** Type 'WeakParams'
284 -- | Weak parameters for debugging purposes only.
286 instance PrimeField WeakParams where
288 instance SubGroup WeakParams where
289 type P WeakParams = WeakParams
293 -- ** Type 'BeleniosParams'
294 -- | Parameters used in Belenios.
295 -- A 2048-bit 'fieldCharac' of a 'PrimeField',
296 -- with a 256-bit 'groupOrder' for a 'Multiplicative' 'SubGroup'
297 -- generated by 'groupGen',
299 instance PrimeField BeleniosParams where
300 fieldCharac = 20694785691422546401013643657505008064922989295751104097100884787057374219242717401922237254497684338129066633138078958404960054389636289796393038773905722803605973749427671376777618898589872735865049081167099310535867780980030790491654063777173764198678527273474476341835600035698305193144284561701911000786737307333564123971732897913240474578834468260652327974647951137672658693582180046317922073668860052627186363386088796882120769432366149491002923444346373222145884100586421050242120365433561201320481118852408731077014151666200162313177169372189248078507711827842317498073276598828825169183103125680162072880719
301 instance SubGroup BeleniosParams where
302 type P BeleniosParams = BeleniosParams
303 groupGen = G (F 2402352677501852209227687703532399932712287657378364916510075318787663274146353219320285676155269678799694668298749389095083896573425601900601068477164491735474137283104610458681314511781646755400527402889846139864532661215055797097162016168270312886432456663834863635782106154918419982534315189740658186868651151358576410138882215396016043228843603930989333662772848406593138406010231675095763777982665103606822406635076697764025346253773085133173495194248967754052573659049492477631475991575198775177711481490920456600205478127054728238140972518639858334115700568353695553423781475582491896050296680037745308460627)
304 groupOrder = F 78571733251071885079927659812671450121821421258408794611510081919805623223441