]> Git — Sourcephile - majurity.git/blob - test/HUnit/Rank.hs
Fix typos in comments
[majurity.git] / test / HUnit / Rank.hs
1 module HUnit.Rank where
2 import Data.Bool
3 import Data.Eq (Eq(..))
4 import Data.Foldable (Foldable(..))
5 import Data.Function (($), (.))
6 import Data.Functor ((<$>))
7 import Data.List
8 import Data.Ord (Ord(..))
9 import Data.Semigroup (Semigroup(..))
10 import Data.Ratio
11 import GHC.Exts (IsList(..))
12 import Majority.Judgment
13 import Prelude (Integer, Num(..), fromIntegral)
14 import Test.Tasty
15 import Test.Tasty.HUnit
16 import Text.Show (Show(..))
17
18 import QuickCheck.Merit ()
19 import QuickCheck.Value ()
20
21 hunit :: TestTree
22 hunit = testGroup "Rank"
23 [ testGroup "lexicographic"
24 [ testLexRank 1 1
25 , testLexRank 5 4
26 , testLexRank 5 5
27 , testLexRank 10 5
28 , testLexRank 15 5
29 ]
30 , testGroup "majority"
31 [ testMajRank 1 1
32 , testMajRank 5 4
33 , testMajRank 5 5
34 , testMajRank 10 5
35 , testMajRank 15 5
36 , testMajRank 25 4
37 ]
38 ]
39
40 testLexRank :: JS -> GS -> TestTree
41 testLexRank js gs =
42 testGroup ("js="<>show js<>" gs="<>show gs)
43 [ testCase "rankOfMerit" $
44 rankOfMerit gs <$> merits js gs
45 @?= [0..lastRank js gs]
46 , testCase "Rank -> Merit -> Rank" $
47 let ranks = [0..lastRank js gs] in
48 rankOfMerit gs .
49 meritOfRank js gs
50 <$> ranks @?= ranks
51 , testCase "Merit -> Rank -> Merit" $
52 let dists = merits js gs in
53 meritOfRank js gs .
54 rankOfMerit gs
55 <$> dists @?= dists
56 ]
57
58 testMajRank :: JS -> GS -> TestTree
59 testMajRank js gs =
60 testGroup ("js="<>show js<>" gs="<>show gs)
61 [ testCase "rankOfMajorityValue" $
62 rankOfMajorityValue gs <$> majorityValues js gs
63 @?= [0..lastRank js gs]
64 ]
65
66 -- | Generate all distributions possible, in lexicographic order.
67 merits :: JS -> GS -> [[G]]
68 merits js0 gs = go 0 js0
69 where
70 go g js
71 | g == gs - 1 = [replicate (fromIntegral js) g]
72 | otherwise = concat
73 [ (replicate (fromIntegral r) g <>) <$> go (g+1) (js-r)
74 | r <- reverse [0..js]
75 ]
76
77 -- | Generate all distributions possible, in majority order.
78 majorityValues :: JS -> GS -> [MajorityValue (Ranked ())]
79 majorityValues js0 gs = sort $ majorityValue . fromList <$> go 0 js0
80 where
81 go g js
82 | g == gs - 1 = [[(Ranked (g, ()), js%1)]]
83 | otherwise = concat
84 [ ((Ranked (g, ()), r%1) :) <$> go (g+1) (js-r)
85 | r <- reverse [0..js]
86 ]
87
88 rankOfMerit :: GS -> [Integer] -> Integer
89 rankOfMerit gsI dist = go 0 ranks dist
90 where
91 js = fromIntegral $ length dist
92 gs = fromIntegral gsI
93 ranks = reverse $ reverse . take gs <$> take js pascalDiagonals
94 go g0 (p:ps) (d:ds) =
95 sum (take dI p) +
96 go d (drop dI <$> ps) ds
97 where dI = fromIntegral (d - g0)
98 go _ _ _ = 0
99
100 meritOfRank :: JS -> GS -> Integer -> [Integer]
101 meritOfRank jsI gsI = go 0 ranks
102 where
103 js = fromIntegral jsI
104 gs = fromIntegral gsI
105 ranks = reverse $ reverse . take gs <$> take js pascalDiagonals
106 go _g0 [] _r = []
107 go g0 (p:ps) r = g : go g (drop s <$> ps) (r-dr)
108 where
109 skip = takeWhile (<= r) $ scanl1 (+) p
110 s = length skip
111 g = g0 + fromIntegral s
112 dr = if null skip then 0 else last skip
113
114 -- | Diagonals of Pascal's triangle.
115 pascalDiagonals :: [[Integer]]
116 pascalDiagonals = repeat 1 : (scanl1 (+) <$> pascalDiagonals)