]> Git — Sourcephile - comptalang.git/blob - lib/Hcompta/Lib/TreeMap.hs
Modif : Calc.Balance : simplification de l’interface.
[comptalang.git] / lib / Hcompta / Lib / TreeMap.hs
1 {-# LANGUAGE DeriveDataTypeable #-}
2 {-# LANGUAGE NamedFieldPuns #-}
3
4 -- | This module implements a 'TreeMap',
5 -- which is like a 'Data.Map.Map'
6 -- but whose key is now a 'NonEmpty' list of 'Data.Map.Map' keys (a 'Path')
7 -- enabling the possibility to gather mapped values
8 -- by 'Path' prefixes (inside a 'Node').
9 module Hcompta.Lib.TreeMap where
10
11 import Control.Applicative ((<$>), (<*>), pure)
12 import Data.Data (Data)
13 import Data.Foldable (Foldable(..))
14 import qualified Data.List
15 import qualified Data.List.NonEmpty
16 import Data.List.NonEmpty (NonEmpty(..))
17 import qualified Data.Map
18 import Data.Monoid (Monoid(..))
19 import Data.Traversable (Traversable(..))
20 import Data.Typeable (Typeable)
21 import Prelude hiding (reverse)
22
23 -- * The 'TreeMap' type
24
25 newtype TreeMap k x
26 = TreeMap (Data.Map.Map k (Node k x))
27 deriving (Data, Eq, Read, Show, Typeable)
28
29 instance (Ord k, Monoid v) => Monoid (TreeMap k v) where
30 mempty = empty
31 mappend = union const
32 -- mconcat = Data.List.foldr mappend mempty
33 instance Ord k => Functor (TreeMap k) where
34 fmap f (TreeMap m) = TreeMap $ fmap (fmap f) m
35 instance Ord k => Foldable (TreeMap k) where
36 foldMap f (TreeMap m) = foldMap (foldMap f) m
37 instance Ord k => Traversable (TreeMap k) where
38 traverse f (TreeMap m) = TreeMap <$> traverse (traverse f) m
39
40 -- * The 'Path' type
41
42 -- | A 'Path' is a non-empty list of 'Data.Map.Map' keys.
43 type Path k = NonEmpty k
44
45 path :: k -> [k] -> Path k
46 path = (:|)
47
48 list :: Path k -> [k]
49 list = Data.List.NonEmpty.toList
50
51 reverse :: Path k -> Path k
52 reverse = Data.List.NonEmpty.reverse
53
54 -- * The 'Node' type
55 data Ord k
56 => Node k x
57 = Node
58 { node_size :: Int -- ^ The number of non-'Nothing' 'node_value's reachable from this 'Node'.
59 , node_value :: Maybe x -- ^ Some value, or 'Nothing' if this 'Node' is intermediary.
60 , node_descendants :: TreeMap k x -- ^ Descendants 'Node's.
61 } deriving (Data, Eq, Read, Show, Typeable)
62
63 instance (Ord k, Monoid v) => Monoid (Node k v) where
64 mempty =
65 Node
66 { node_value = Nothing
67 , node_size = 0
68 , node_descendants = TreeMap mempty
69 }
70 mappend
71 Node{node_value=x0, node_descendants=m0}
72 Node{node_value=x1, node_descendants=m1} =
73 let m = union const m0 m1 in
74 let x = x0 `mappend` x1 in
75 Node
76 { node_value = x
77 , node_size = size m + maybe 0 (const 1) x
78 , node_descendants = union const m0 m1
79 }
80 -- mconcat = Data.List.foldr mappend mempty
81
82 instance Ord k => Functor (Node k) where
83 fmap f Node{node_value=x, node_descendants=m, node_size} =
84 Node
85 { node_value = fmap f x
86 , node_descendants = Hcompta.Lib.TreeMap.map f m
87 , node_size
88 }
89
90 instance Ord k => Foldable (Node k) where
91 foldMap f Node{node_value=Nothing, node_descendants=TreeMap m} =
92 foldMap (foldMap f) m
93 foldMap f Node{node_value=Just x, node_descendants=TreeMap m} =
94 f x `mappend` foldMap (foldMap f) m
95
96 instance Ord k => Traversable (Node k) where
97 traverse f Node{node_value=Nothing, node_descendants=TreeMap m, node_size} =
98 Node node_size <$> pure Nothing <*> (TreeMap <$> traverse (traverse f) m)
99 traverse f Node{node_value=Just x, node_descendants=TreeMap m, node_size} =
100 Node node_size <$> (Just <$> f x) <*> (TreeMap <$> traverse (traverse f) m)
101
102 -- * Contructors
103
104 -- | Return the empty 'TreeMap'.
105 empty :: TreeMap k x
106 empty = TreeMap Data.Map.empty
107
108 -- | Return a 'TreeMap' only mapping the given 'Path' to the given value.
109 singleton :: Ord k => Path k -> x -> TreeMap k x
110 singleton ks x = insert const ks x empty
111
112 -- | Return a 'Node' only containing the given value.
113 leaf :: Ord k => x -> Node k x
114 leaf x =
115 Node
116 { node_value = Just x
117 , node_descendants = empty
118 , node_size = 1
119 }
120
121 -- | Return the given 'TreeMap' associating the given 'Path' with the given value,
122 -- merging values if the given 'TreeMap' already associates the given 'Path'
123 -- with a non-'Nothing' 'node_value'.
124 insert :: Ord k => (x -> x -> x) -> Path k -> x -> TreeMap k x -> TreeMap k x
125 insert merge (k:|[]) x (TreeMap m) =
126 TreeMap $
127 Data.Map.insertWith
128 (\_ Node{node_value=x1, node_descendants=m1, node_size=s1} ->
129 Node
130 { node_value = maybe (Just x) (Just . merge x) x1
131 , node_descendants = m1
132 , node_size = maybe (s1 + 1) (const s1) x1
133 })
134 k (leaf x) m
135 insert merge (k:|k':ks) x (TreeMap m) =
136 TreeMap $
137 Data.Map.insertWith
138 (\_ Node{node_value=x1, node_descendants=m1} ->
139 let m' = insert merge (path k' ks) x m1 in
140 Node{node_value=x1, node_descendants=m', node_size=size m' + maybe 0 (const 1) x1})
141 k
142 (Node
143 { node_value = Nothing
144 , node_descendants = insert merge (path k' ks) x empty
145 , node_size = 1
146 })
147 m
148
149 -- | Return a 'TreeMap' associating for each tuple of the given list
150 -- the 'Path' to the value,
151 -- merging values of identical 'Path's (in respective order).
152 from_List :: Ord k => (x -> x -> x) -> [(Path k, x)] -> TreeMap k x
153 from_List merge = Data.List.foldl (\acc (p, x) -> insert merge p x acc) empty
154
155 -- | Return a 'TreeMap' associating for each key and value of the given 'Data.Map.Map'
156 -- the 'Path' to the value,
157 -- merging values of identical 'Path's (in respective order).
158 from_Map :: Ord k => (x -> x -> x) -> Data.Map.Map (Path k) x -> TreeMap k x
159 from_Map merge = Data.Map.foldlWithKey (\acc p x -> insert merge p x acc) empty
160
161 -- | Return a 'TreeMap' associating the same 'Path's as both given 'TreeMap's,
162 -- merging values (in respective order) when a 'Path' leads
163 -- to a non-'Nothing' 'node_value' in both given 'TreeMap's.
164 union :: Ord k => (x -> x -> x) -> TreeMap k x -> TreeMap k x -> TreeMap k x
165 union merge (TreeMap tm0) (TreeMap tm1) =
166 TreeMap $
167 Data.Map.unionWith
168 (\Node{node_value=x0, node_descendants=m0}
169 Node{node_value=x1, node_descendants=m1} ->
170 let m = union merge m0 m1 in
171 let x = maybe x1 (\x0' -> maybe (Just x0') (Just . merge x0') x1) x0 in
172 Node
173 { node_value = x
174 , node_descendants = m
175 , node_size = size m + maybe 0 (const 1) x
176 })
177 tm0 tm1
178
179 -- | Return the 'union' of the given 'TreeMap's.
180 --
181 -- NOTE: use 'Data.List.foldl'' to reduce demand on the control-stack.
182 unions :: Ord k => (x -> x -> x) -> [TreeMap k x] -> TreeMap k x
183 unions merge ts = Data.List.foldl' (union merge) empty ts
184
185 -- foldl' :: (a -> b -> a) -> a -> [b] -> a
186 -- foldl' f = go
187 -- where
188 -- go z [] = z
189 -- go z (x:xs) = z `seq` go (f z x) xs
190
191 -- | Return the given 'TreeMap' with each non-'Nothing' 'node_value'
192 -- mapped by the given function.
193 map :: Ord k => (x -> y) -> TreeMap k x -> TreeMap k y
194 map f =
195 TreeMap .
196 Data.Map.map
197 (\n@Node{node_value=x, node_descendants=m} ->
198 n{ node_value=maybe Nothing (Just . f) x
199 , node_descendants=Hcompta.Lib.TreeMap.map f m
200 }) .
201 nodes
202
203 -- | Return the given 'TreeMap' with each 'node_value'
204 -- mapped by the given function supplied with
205 -- the already mapped 'node_descendants' of the current 'Node'.
206 map_by_depth_first :: Ord k => (TreeMap k y -> Maybe x -> y) -> TreeMap k x -> TreeMap k y
207 map_by_depth_first f =
208 TreeMap .
209 Data.Map.map
210 (\n@Node{node_value, node_descendants} ->
211 let m = map_by_depth_first f node_descendants in
212 let x = f m node_value in
213 n{ node_value = Just x
214 , node_descendants = m
215 , node_size = size m + 1
216 }) .
217 nodes
218
219 -- * Extractors
220
221 -- | Return the 'Data.Map.Map' in the given 'TreeMap'.
222 nodes :: TreeMap k x -> Data.Map.Map k (Node k x)
223 nodes (TreeMap m) = m
224
225 -- | Return the number of non-'Nothing' 'node_value's in the given 'TreeMap'.
226 --
227 -- * Complexity: O(r) where r is the size of the root 'Data.Map.Map'.
228 size :: Ord k => TreeMap k x -> Int
229 size = Data.Map.foldr ((+) . node_size) 0 . nodes
230
231 -- | Return the value (if any) associated with the given 'Path'.
232 find :: Ord k => Path k -> TreeMap k x -> Maybe x
233 find (k:|[]) (TreeMap m) = maybe Nothing node_value $ Data.Map.lookup k m
234 find (k:|k':ks) (TreeMap m) =
235 maybe Nothing (find (path k' ks) . node_descendants) $
236 Data.Map.lookup k m
237
238 -- | Return the given accumulator folded by the given function
239 -- applied on non-'Nothing' 'node_value's
240 -- from left to right through the given 'TreeMap'.
241 foldl_with_Path :: Ord k => (a -> Path k -> x -> a) -> a -> TreeMap k x -> a
242 foldl_with_Path =
243 foldp []
244 where
245 foldp :: Ord k
246 => [k] -> (a -> Path k -> x -> a)
247 -> a -> TreeMap k x -> a
248 foldp p fct a (TreeMap m) =
249 Data.Map.foldlWithKey
250 (\acc k Node{node_value, node_descendants} ->
251 let p' = path k p in
252 let acc' = maybe acc (fct acc (reverse p')) node_value in
253 foldp (k:p) fct acc' node_descendants) a m
254
255 -- | Return the given accumulator folded by the given function
256 -- applied on non-'Nothing' 'Node's and 'node_value's
257 -- from left to right through the given 'TreeMap'.
258 foldl_with_Path_and_Node :: Ord k => (a -> Path k -> Node k x -> x -> a) -> a -> TreeMap k x -> a
259 foldl_with_Path_and_Node =
260 foldp []
261 where
262 foldp :: Ord k
263 => [k] -> (a -> Path k -> Node k x -> x -> a)
264 -> a -> TreeMap k x -> a
265 foldp p fct a (TreeMap m) =
266 Data.Map.foldlWithKey
267 (\acc k n@Node{node_value, node_descendants} ->
268 let p' = path k p in
269 let acc' = maybe acc (fct acc (reverse p') n) node_value in
270 foldp (k:p) fct acc' node_descendants) a m
271
272 -- | Return the given accumulator folded by the given function
273 -- applied on non-'Nothing' 'node_value's
274 -- from right to left through the given 'TreeMap'.
275 foldr_with_Path :: Ord k => (Path k -> x -> a -> a) -> a -> TreeMap k x -> a
276 foldr_with_Path =
277 foldp []
278 where
279 foldp :: Ord k
280 => [k] -> (Path k -> x -> a -> a)
281 -> a -> TreeMap k x -> a
282 foldp p fct a (TreeMap m) =
283 Data.Map.foldrWithKey
284 (\k Node{node_value, node_descendants} acc ->
285 let p' = path k p in
286 let acc' = foldp (k:p) fct acc node_descendants in
287 maybe acc' (\x -> fct (reverse p') x acc') node_value) a m
288
289 -- | Return the given accumulator folded by the given function
290 -- applied on non-'Nothing' 'Node's and 'node_value's
291 -- from right to left through the given 'TreeMap'.
292 foldr_with_Path_and_Node :: Ord k => (Path k -> Node k x -> x -> a -> a) -> a -> TreeMap k x -> a
293 foldr_with_Path_and_Node =
294 foldp []
295 where
296 foldp :: Ord k
297 => [k] -> (Path k -> Node k x -> x -> a -> a)
298 -> a -> TreeMap k x -> a
299 foldp p fct a (TreeMap m) =
300 Data.Map.foldrWithKey
301 (\k n@Node{node_value, node_descendants} acc ->
302 let p' = path k p in
303 let acc' = foldp (k:p) fct acc node_descendants in
304 maybe acc' (\x -> fct (reverse p') n x acc') node_value) a m
305
306 -- | Return a 'Data.Map.Map' associating each 'Path'
307 -- leading to a non-'Nothing' 'node_value' in the given 'TreeMap',
308 -- with its value mapped by the given function.
309 flatten :: Ord k => (x -> y) -> TreeMap k x -> Data.Map.Map (Path k) y
310 flatten =
311 flat_map []
312 where
313 flat_map :: Ord k
314 => [k] -> (x -> y)
315 -> TreeMap k x
316 -> Data.Map.Map (Path k) y
317 flat_map p f (TreeMap m) =
318 Data.Map.unions $
319 (
320 Data.Map.mapKeysMonotonic (reverse . flip path p) $
321 Data.Map.mapMaybe (\Node{node_value=x} -> f <$> x) m
322 ) :
323 Data.Map.foldrWithKey
324 (\k -> (:) . flat_map (k:p) f . node_descendants)
325 [] m