]> Git — Sourcephile - comptalang.git/blob - lib/Hcompta/Lib/TreeMap.hs
Ajout : Calculus.Lambda.Omega.Explicit.
[comptalang.git] / lib / Hcompta / Lib / TreeMap.hs
1 {-# LANGUAGE DeriveDataTypeable #-}
2 {-# LANGUAGE NamedFieldPuns #-}
3
4 -- | This module implements a strict 'TreeMap',
5 -- which is like a 'Map'
6 -- but whose key is now a 'NonEmpty' list of 'Map' keys (a 'Path')
7 -- enabling the possibility to gather mapped values
8 -- by 'Path' prefixes (inside a 'Node').
9 module Hcompta.Lib.TreeMap where
10
11 import Control.Applicative ((<$>), (<*>), pure)
12 import Control.DeepSeq (NFData(..))
13 import Data.Bool
14 import Data.Eq (Eq)
15 import Data.Data (Data)
16 import Data.Foldable (Foldable, foldMap)
17 import Data.Functor (Functor(..))
18 import Data.Ord (Ord(..))
19 import qualified Data.List
20 import qualified Data.List.NonEmpty
21 import Data.List.NonEmpty (NonEmpty(..))
22 import Data.Map.Strict (Map)
23 import qualified Data.Map.Strict as Data.Map
24 import Data.Maybe (Maybe(..), maybe)
25 import Data.Monoid (Monoid(..))
26 import qualified Data.Strict.Maybe as Strict
27 import Data.Traversable (Traversable(..))
28 import Data.Typeable (Typeable)
29 import Prelude (($), (.), Int, Num(..), Show, const, flip, id, seq)
30
31 import qualified Hcompta.Lib.Strict as Strict ()
32
33 -- * Type 'TreeMap'
34
35 newtype Ord k
36 => TreeMap k x
37 = TreeMap (Map k (Node k x))
38 deriving (Data, Eq, Show, Typeable)
39
40 instance (Ord k, Monoid v) => Monoid (TreeMap k v) where
41 mempty = empty
42 mappend = union mappend
43 -- mconcat = Data.List.foldr mappend mempty
44 instance Ord k => Functor (TreeMap k) where
45 fmap f (TreeMap m) = TreeMap $ fmap (fmap f) m
46 instance Ord k => Foldable (TreeMap k) where
47 foldMap f (TreeMap m) = foldMap (foldMap f) m
48 instance Ord k => Traversable (TreeMap k) where
49 traverse f (TreeMap m) = TreeMap <$> traverse (traverse f) m
50 instance (Ord k, NFData k, NFData x) => NFData (TreeMap k x) where
51 rnf (TreeMap m) = rnf m
52
53 -- * Type 'Path'
54
55 -- | A 'Path' is a non-empty list of 'Map' keys.
56 type Path k = NonEmpty k
57
58 path :: k -> [k] -> Path k
59 path = (:|)
60
61 list :: Path k -> [k]
62 list = Data.List.NonEmpty.toList
63
64 reverse :: Path k -> Path k
65 reverse = Data.List.NonEmpty.reverse
66
67 -- * Type 'Node'
68 data Ord k
69 => Node k x
70 = Node
71 { node_size :: !Int -- ^ The number of non-'Strict.Nothing' 'node_value's reachable from this 'Node'.
72 , node_value :: !(Strict.Maybe x) -- ^ Some value, or 'Strict.Nothing' if this 'Node' is intermediary.
73 , node_descendants :: !(TreeMap k x) -- ^ Descendants 'Node's.
74 } deriving (Data, Eq, Show, Typeable)
75
76
77 instance (Ord k, Monoid v) => Monoid (Node k v) where
78 mempty =
79 Node
80 { node_value = Strict.Nothing
81 , node_size = 0
82 , node_descendants = TreeMap mempty
83 }
84 mappend
85 Node{node_value=x0, node_descendants=m0}
86 Node{node_value=x1, node_descendants=m1} =
87 let node_descendants = union const m0 m1 in
88 let node_value = x0 `mappend` x1 in
89 Node
90 { node_value
91 , node_size = size node_descendants
92 + Strict.maybe 0 (const 1) node_value
93 , node_descendants
94 }
95 -- mconcat = Data.List.foldr mappend mempty
96 instance Ord k => Functor (Node k) where
97 fmap f Node{node_value=x, node_descendants=m, node_size} =
98 Node
99 { node_value = fmap f x
100 , node_descendants = map f m
101 , node_size
102 }
103 instance Ord k => Foldable (Node k) where
104 foldMap f Node{node_value=Strict.Nothing, node_descendants=TreeMap m} =
105 foldMap (foldMap f) m
106 foldMap f Node{node_value=Strict.Just x, node_descendants=TreeMap m} =
107 f x `mappend` foldMap (foldMap f) m
108 instance Ord k => Traversable (Node k) where
109 traverse f Node{node_value=Strict.Nothing, node_descendants=TreeMap m, node_size} =
110 Node node_size <$> pure Strict.Nothing <*> (TreeMap <$> traverse (traverse f) m)
111 traverse f Node{node_value=Strict.Just x, node_descendants=TreeMap m, node_size} =
112 Node node_size <$> (Strict.Just <$> f x) <*> (TreeMap <$> traverse (traverse f) m)
113 instance (Ord k, NFData k, NFData x) => NFData (Node k x) where
114 rnf (Node s v d) = rnf s `seq` rnf v `seq` rnf d
115
116 node_find :: Ord k => [k] -> Node k x -> Strict.Maybe (Node k x)
117 node_find [] n = Strict.Just n
118 node_find (k:ks) (Node {node_descendants=TreeMap m}) =
119 maybe Strict.Nothing (node_find ks) $
120 Data.Map.lookup k m
121
122 -- * Construct
123
124 -- | Return the empty 'TreeMap'.
125 empty :: Ord k => TreeMap k x
126 empty = TreeMap Data.Map.empty
127
128 -- | Return a 'TreeMap' only mapping the given 'Path' to the given value.
129 singleton :: Ord k => Path k -> x -> TreeMap k x
130 singleton ks x = insert const ks x empty
131
132 -- | Return a 'Node' only containing the given value.
133 leaf :: Ord k => x -> Node k x
134 leaf x =
135 Node
136 { node_value = Strict.Just x
137 , node_descendants = empty
138 , node_size = 1
139 }
140
141 -- | Return the given 'TreeMap' associating the given 'Path' with the given value,
142 -- merging values if the given 'TreeMap' already associates the given 'Path'
143 -- with a non-'Strict.Nothing' 'node_value'.
144 insert :: Ord k => (x -> x -> x) -> Path k -> x -> TreeMap k x -> TreeMap k x
145 insert merge (k:|[]) x (TreeMap m) =
146 TreeMap $
147 Data.Map.insertWith
148 (\_ Node{node_value = x1, node_descendants = m1, node_size = s1} ->
149 Node
150 { node_value = Strict.maybe (Strict.Just x) (Strict.Just . merge x) x1
151 , node_descendants = m1
152 , node_size = Strict.maybe (s1 + 1) (const s1) x1
153 })
154 k (leaf x) m
155 insert merge (k:|k':ks) x (TreeMap m) =
156 TreeMap $
157 Data.Map.insertWith
158 (\_ Node{node_value = x1, node_descendants = m1} ->
159 let m' = insert merge (path k' ks) x $ m1 in
160 let s' = size m' + Strict.maybe 0 (const 1) x1 in
161 Node{node_value=x1, node_descendants=m', node_size=s'})
162 k
163 (Node
164 { node_value = Strict.Nothing
165 , node_descendants = insert merge (path k' ks) x empty
166 , node_size = 1
167 })
168 m
169
170 -- | Return a 'TreeMap' associating for each tuple of the given list
171 -- the 'Path' to the value,
172 -- merging values of identical 'Path's (in respective order).
173 from_List :: Ord k => (x -> x -> x) -> [(Path k, x)] -> TreeMap k x
174 from_List merge = Data.List.foldl (\acc (p, x) -> insert merge p x acc) empty
175
176 -- | Return a 'TreeMap' associating for each key and value of the given 'Map'
177 -- the 'Path' to the value,
178 -- merging values of identical 'Path's (in respective order).
179 from_Map :: Ord k => (x -> x -> x) -> Map (Path k) x -> TreeMap k x
180 from_Map merge = Data.Map.foldlWithKey (\acc p x -> insert merge p x acc) empty
181
182 -- * Size
183
184 -- | Return the 'Map' in the given 'TreeMap'.
185 nodes :: Ord k => TreeMap k x -> Map k (Node k x)
186 nodes (TreeMap m) = m
187
188 -- | Return 'True' iif. the given 'TreeMap' is 'empty'.
189 null :: Ord k => TreeMap k x -> Bool
190 null (TreeMap m) = Data.Map.null m
191
192 -- | Return the number of non-'Strict.Nothing' 'node_value's in the given 'TreeMap'.
193 --
194 -- * Complexity: O(r) where r is the size of the root 'Map'.
195 size :: Ord k => TreeMap k x -> Int
196 size = Data.Map.foldr ((+) . node_size) 0 . nodes
197
198 -- * Find
199
200 -- | Return the value (if any) associated with the given 'Path'.
201 find :: Ord k => Path k -> TreeMap k x -> Strict.Maybe x
202 find (k:|[]) (TreeMap m) = maybe Strict.Nothing node_value $ Data.Map.lookup k m
203 find (k:|k':ks) (TreeMap m) =
204 maybe Strict.Nothing (find (path k' ks) . node_descendants) $
205 Data.Map.lookup k m
206
207 -- | Return the values (if any) associated with the prefixes of the given 'Path' (included).
208 find_along :: Ord k => Path k -> TreeMap k x -> [x]
209 find_along p (TreeMap tm) =
210 go (list p) tm
211 where
212 go :: Ord k => [k] -> Map k (Node k x) -> [x]
213 go [] _m = []
214 go (k:ks) m =
215 case Data.Map.lookup k m of
216 Nothing -> []
217 Just node ->
218 Strict.maybe id (:) (node_value node) $
219 go ks $ nodes (node_descendants node)
220
221 find_node :: Ord k => Path k -> TreeMap k x -> Strict.Maybe (Node k x)
222 find_node (k:|[]) (TreeMap m) = maybe Strict.Nothing Strict.Just $ Data.Map.lookup k m
223 find_node (k:|k':ks) (TreeMap m) =
224 maybe Strict.Nothing (find_node (path k' ks) . node_descendants) $
225 Data.Map.lookup k m
226
227 -- * Union
228
229 -- | Return a 'TreeMap' associating the same 'Path's as both given 'TreeMap's,
230 -- merging values (in respective order) when a 'Path' leads
231 -- to a non-'Strict.Nothing' 'node_value' in both given 'TreeMap's.
232 union :: Ord k => (x -> x -> x) -> TreeMap k x -> TreeMap k x -> TreeMap k x
233 union merge (TreeMap tm0) (TreeMap tm1) =
234 TreeMap $
235 Data.Map.unionWith
236 (\Node{node_value=x0, node_descendants=m0}
237 Node{node_value=x1, node_descendants=m1} ->
238 let node_descendants = union merge m0 m1 in
239 let node_value = Strict.maybe x1 (\x0' -> Strict.maybe (Strict.Just x0') (Strict.Just . merge x0') x1) x0 in
240 Node
241 { node_size = size node_descendants + Strict.maybe 0 (const 1) node_value
242 , node_value
243 , node_descendants
244 })
245 tm0 tm1
246
247 -- | Return the 'union' of the given 'TreeMap's.
248 --
249 -- NOTE: use 'Data.List.foldl'' to reduce demand on the control-stack.
250 unions :: Ord k => (x -> x -> x) -> [TreeMap k x] -> TreeMap k x
251 unions merge = Data.List.foldl' (union merge) empty
252
253 -- foldl' :: (a -> b -> a) -> a -> [b] -> a
254 -- foldl' f = go
255 -- where
256 -- go z [] = z
257 -- go z (x:xs) = z `seq` go (f z x) xs
258
259 -- * Map
260
261 -- | Return the given 'TreeMap' with each non-'Strict.Nothing' 'node_value'
262 -- mapped by the given function.
263 map :: Ord k => (x -> y) -> TreeMap k x -> TreeMap k y
264 map f =
265 TreeMap .
266 Data.Map.map
267 (\n@Node{node_value=x, node_descendants=m} ->
268 n{ node_value = fmap f x
269 , node_descendants = map f m
270 }) .
271 nodes
272
273 -- | Return the given 'TreeMap' with each 'Path' section
274 -- and each non-'Strict.Nothing' 'node_value'
275 -- mapped by the given functions.
276 --
277 -- WARNING: the function mapping 'Path' sections must be monotonic,
278 -- like in 'Data.Map.mapKeysMonotonic'.
279 map_monotonic :: (Ord k, Ord l) => (k -> l) -> (x -> y) -> TreeMap k x -> TreeMap l y
280 map_monotonic fk fx =
281 TreeMap .
282 Data.Map.mapKeysMonotonic fk .
283 Data.Map.map
284 (\n@Node{node_value=x, node_descendants=m} ->
285 n{ node_value = fmap fx x
286 , node_descendants = map_monotonic fk fx m
287 }) .
288 nodes
289
290 -- | Return the given 'TreeMap' with each 'node_value'
291 -- mapped by the given function supplied with
292 -- the already mapped 'node_descendants' of the current 'Node'.
293 map_by_depth_first :: Ord k => (TreeMap k y -> Strict.Maybe x -> y) -> TreeMap k x -> TreeMap k y
294 map_by_depth_first f =
295 TreeMap .
296 Data.Map.map
297 (\Node{node_value, node_descendants} ->
298 let m = map_by_depth_first f node_descendants in
299 Node
300 { node_value = Strict.Just $ f m node_value
301 , node_descendants = m
302 , node_size = size m + 1
303 }) .
304 nodes
305
306 -- * Alter
307
308 alterl_path :: Ord k => (Strict.Maybe x -> Strict.Maybe x) -> Path k -> TreeMap k x -> TreeMap k x
309 alterl_path fct =
310 go fct . list
311 where
312 go :: Ord k
313 => (Strict.Maybe x -> Strict.Maybe x) -> [k]
314 -> TreeMap k x -> TreeMap k x
315 go _f [] m = m
316 go f (k:p) (TreeMap m) =
317 TreeMap $
318 Data.Map.alter
319 (\c ->
320 let (cv, cm) =
321 case c of
322 Just Node{node_value=v, node_descendants=d} -> (v, d)
323 Nothing -> (Strict.Nothing, empty) in
324 let fx = f cv in
325 let gm = go f p cm in
326 case (fx, size gm) of
327 (Strict.Nothing, 0) -> Nothing
328 (_, s) -> Just
329 Node
330 { node_value = fx
331 , node_descendants = gm
332 , node_size = s + 1
333 }
334 ) k m
335
336 -- * Fold
337
338 -- | Return the given accumulator folded by the given function
339 -- applied on non-'Strict.Nothing' 'node_value's
340 -- from left to right through the given 'TreeMap'.
341 foldl_with_Path :: Ord k => (a -> Path k -> x -> a) -> a -> TreeMap k x -> a
342 foldl_with_Path =
343 foldp []
344 where
345 foldp :: Ord k
346 => [k] -> (a -> Path k -> x -> a)
347 -> a -> TreeMap k x -> a
348 foldp p fct a (TreeMap m) =
349 Data.Map.foldlWithKey
350 (\acc k Node{node_value, node_descendants} ->
351 let acc' = Strict.maybe acc (fct acc (reverse $ path k p)) node_value in
352 foldp (k:p) fct acc' node_descendants) a m
353
354 -- | Return the given accumulator folded by the given function
355 -- applied on non-'Strict.Nothing' 'Node's and 'node_value's
356 -- from left to right through the given 'TreeMap'.
357 foldl_with_Path_and_Node :: Ord k => (a -> Node k x -> Path k -> x -> a) -> a -> TreeMap k x -> a
358 foldl_with_Path_and_Node =
359 foldp []
360 where
361 foldp :: Ord k
362 => [k] -> (a -> Node k x -> Path k -> x -> a)
363 -> a -> TreeMap k x -> a
364 foldp p fct a (TreeMap m) =
365 Data.Map.foldlWithKey
366 (\acc k n@Node{node_value, node_descendants} ->
367 let acc' = Strict.maybe acc (fct acc n (reverse $ path k p)) node_value in
368 foldp (k:p) fct acc' node_descendants) a m
369
370 -- | Return the given accumulator folded by the given function
371 -- applied on non-'Strict.Nothing' 'node_value's
372 -- from right to left through the given 'TreeMap'.
373 foldr_with_Path :: Ord k => (Path k -> x -> a -> a) -> a -> TreeMap k x -> a
374 foldr_with_Path =
375 foldp []
376 where
377 foldp :: Ord k
378 => [k] -> (Path k -> x -> a -> a)
379 -> a -> TreeMap k x -> a
380 foldp p fct a (TreeMap m) =
381 Data.Map.foldrWithKey
382 (\k Node{node_value, node_descendants} acc ->
383 let acc' = foldp (k:p) fct acc node_descendants in
384 Strict.maybe acc' (\x -> fct (reverse $ path k p) x acc') node_value) a m
385
386 -- | Return the given accumulator folded by the given function
387 -- applied on non-'Strict.Nothing' 'Node's and 'node_value's
388 -- from right to left through the given 'TreeMap'.
389 foldr_with_Path_and_Node :: Ord k => (Node k x -> Path k -> x -> a -> a) -> a -> TreeMap k x -> a
390 foldr_with_Path_and_Node =
391 foldp []
392 where
393 foldp :: Ord k
394 => [k] -> (Node k x -> Path k -> x -> a -> a)
395 -> a -> TreeMap k x -> a
396 foldp p fct a (TreeMap m) =
397 Data.Map.foldrWithKey
398 (\k n@Node{node_value, node_descendants} acc ->
399 let acc' = foldp (k:p) fct acc node_descendants in
400 Strict.maybe acc' (\x -> fct n (reverse $ path k p) x acc') node_value) a m
401
402 -- | Return the given accumulator folded by the given function
403 -- applied on non-'Strict.Nothing' 'node_value's
404 -- from left to right along the given 'Path'.
405 foldl_path :: Ord k => (Path k -> x -> a -> a) -> Path k -> TreeMap k x -> a -> a
406 foldl_path fct =
407 go fct [] . list
408 where
409 go :: Ord k
410 => (Path k -> x -> a -> a) -> [k] -> [k]
411 -> TreeMap k x -> a -> a
412 go _f _ [] _t a = a
413 go f p (k:n) (TreeMap t) a =
414 case Data.Map.lookup k t of
415 Nothing -> a
416 Just Node{node_value=v, node_descendants=d} ->
417 case v of
418 Strict.Nothing -> go f (k:p) n d a
419 Strict.Just x -> go f (k:p) n d (f (reverse $ path k p) x a)
420
421 -- | Return the given accumulator folded by the given function
422 -- applied on non-'Strict.Nothing' 'node_value's
423 -- from right to left along the given 'Path'.
424 foldr_path :: Ord k => (Path k -> x -> a -> a) -> Path k -> TreeMap k x -> a -> a
425 foldr_path fct =
426 go fct [] . list
427 where
428 go :: Ord k
429 => (Path k -> x -> a -> a) -> [k] -> [k]
430 -> TreeMap k x -> a -> a
431 go _f _ [] _t a = a
432 go f p (k:n) (TreeMap t) a =
433 case Data.Map.lookup k t of
434 Nothing -> a
435 Just Node{node_value=v, node_descendants=d} ->
436 case v of
437 Strict.Nothing -> go f (k:p) n d a
438 Strict.Just x -> f (reverse $ path k p) x $ go f (k:p) n d a
439
440 -- * Flatten
441
442 -- | Return a 'Map' associating each 'Path'
443 -- leading to a non-'Strict.Nothing' 'node_value' in the given 'TreeMap',
444 -- with its value mapped by the given function.
445 flatten :: Ord k => (x -> y) -> TreeMap k x -> Map (Path k) y
446 flatten = flatten_with_Path . const
447
448 -- | Like 'flatten' but with also the current 'Path' given to the mapping function.
449 flatten_with_Path :: Ord k => (Path k -> x -> y) -> TreeMap k x -> Map (Path k) y
450 flatten_with_Path =
451 flat_map []
452 where
453 flat_map :: Ord k
454 => [k] -> (Path k -> x -> y)
455 -> TreeMap k x
456 -> Map (Path k) y
457 flat_map p f (TreeMap m) =
458 Data.Map.unions $
459 (
460 Data.Map.mapKeysMonotonic (reverse . flip path p) $
461 Data.Map.mapMaybeWithKey (\k Node{node_value} ->
462 case node_value of
463 Strict.Nothing -> Nothing
464 Strict.Just x -> Just $ f (reverse $ path k p) x) m
465 ) :
466 Data.Map.foldrWithKey
467 (\k -> (:) . flat_map (k:p) f . node_descendants)
468 [] m
469
470 -- * Filter
471
472 -- | Return the given 'TreeMap'
473 -- keeping only its non-'Strict.Nothing' 'node_value's
474 -- passing the given predicate.
475 filter :: Ord k => (x -> Bool) -> TreeMap k x -> TreeMap k x
476 filter f =
477 map_Maybe_with_Path
478 (\_p x -> if f x then Strict.Just x else Strict.Nothing)
479
480 -- | Like 'filter' but with also the current 'Path' given to the predicate.
481 filter_with_Path :: Ord k => (Path k -> x -> Bool) -> TreeMap k x -> TreeMap k x
482 filter_with_Path f =
483 map_Maybe_with_Path
484 (\p x -> if f p x then Strict.Just x else Strict.Nothing)
485
486 -- | Like 'filter_with_Path' but with also the current 'Node' given to the predicate.
487 filter_with_Path_and_Node :: Ord k => (Node k x -> Path k -> x -> Bool) -> TreeMap k x -> TreeMap k x
488 filter_with_Path_and_Node f =
489 map_Maybe_with_Path_and_Node
490 (\n p x -> if f n p x then Strict.Just x else Strict.Nothing)
491
492 -- | Return the given 'TreeMap'
493 -- mapping its non-'Strict.Nothing' 'node_value's
494 -- and keeping only the non-'Strict.Nothing' results.
495 map_Maybe :: Ord k => (x -> Strict.Maybe y) -> TreeMap k x -> TreeMap k y
496 map_Maybe = map_Maybe_with_Path . const
497
498 -- | Like 'map_Maybe' but with also the current 'Path' given to the predicate.
499 map_Maybe_with_Path :: Ord k => (Path k -> x -> Strict.Maybe y) -> TreeMap k x -> TreeMap k y
500 map_Maybe_with_Path = map_Maybe_with_Path_and_Node . const
501
502 -- | Like 'map_Maybe_with_Path' but with also the current 'Node' given to the predicate.
503 map_Maybe_with_Path_and_Node :: Ord k => (Node k x -> Path k -> x -> Strict.Maybe y) -> TreeMap k x -> TreeMap k y
504 map_Maybe_with_Path_and_Node =
505 go []
506 where
507 go :: Ord k
508 => [k] -> (Node k x -> Path k -> x -> Strict.Maybe y)
509 -> TreeMap k x
510 -> TreeMap k y
511 go p test (TreeMap m) =
512 TreeMap $
513 Data.Map.mapMaybeWithKey
514 (\k node@Node{node_value=v, node_descendants=ns} ->
515 let node_descendants = go (k:p) test ns in
516 let node_size = size node_descendants in
517 case v of
518 Strict.Just x ->
519 let node_value = test node (reverse $ path k p) x in
520 case node_value of
521 Strict.Nothing | null node_descendants -> Nothing
522 Strict.Nothing -> Just Node{node_value, node_descendants, node_size=1 + node_size}
523 Strict.Just _ -> Just Node{node_value, node_descendants, node_size}
524 _ ->
525 if null node_descendants
526 then Nothing
527 else Just Node{node_value=Strict.Nothing, node_descendants, node_size}
528 ) m