]> Git — Sourcephile - comptalang.git/blob - lib/Hcompta/Lib/Interval/Sieve.hs
Ajout : Lib.TreeMap.Zipper : en prévision de collectes « à la XSLT » sur Chart.
[comptalang.git] / lib / Hcompta / Lib / Interval / Sieve.hs
1 {-# LANGUAGE FlexibleContexts #-}
2 {-# LANGUAGE FlexibleInstances #-}
3 {-# LANGUAGE MultiParamTypeClasses #-}
4 {-# LANGUAGE TupleSections #-}
5 {-# LANGUAGE TypeFamilies #-}
6 {-# OPTIONS_GHC -fno-warn-orphans #-}
7 module Hcompta.Lib.Interval.Sieve where
8
9 import Control.Applicative (Applicative(..))
10 import Control.Exception (assert)
11 import Data.Bool
12 import Data.Eq (Eq(..))
13 import Data.Ord (Ordering(..))
14 import qualified Data.FingerTree as FT
15 import Data.FingerTree (FingerTree, ViewL(..), ViewR(..), (><), (<|), (|>))
16 import Data.Foldable (Foldable)
17 import qualified Data.Foldable as Foldable
18 import Data.Functor ((<$>))
19 import qualified Data.List
20 import Data.Maybe (Maybe(..), fromMaybe)
21 import Data.Monoid (Monoid(..))
22 import Prelude (($), (.), Bounded(..), Ord(..), Show(..), undefined)
23
24 import qualified Hcompta.Lib.Interval as Interval
25 import Hcompta.Lib.Interval (Interval(..), low, high, (..<..), (..<<..), Position(..), position, flip_limit, Pretty(..))
26
27
28 -- * Type 'Sieve'
29
30 -- | '..<<..'-ordered union of 'Interval's.
31 --
32 -- Ressources:
33 --
34 -- * Ralf Hinze and Ross Paterson,
35 -- \"Finger trees: a simple general-purpose data structure\",
36 -- /Journal of Functional Programming/ 16:2 (2006) pp 197-217.
37 -- <http://staff.city.ac.uk/~ross/papers/FingerTree.html>
38 -- * <https://hackage.haskell.org/package/fingertree/docs/Data-IntervalMap-FingerTree.html>
39 newtype Sieve x =
40 Sieve { unSieve :: FingerTree (Measure x) (Interval x) }
41
42 instance (Ord x, Show x) => Show (Pretty (Sieve x)) where
43 show (Pretty s) | Hcompta.Lib.Interval.Sieve.null s = "empty"
44 show (Pretty s) = Data.List.intercalate " u " $ Data.List.map (show . Pretty) $ intervals s
45
46 -- | Like 'Data.Functor.fmap' but working on 'Interval's.
47 fmap_interval
48 :: (Ord x, Ord y)
49 => (Interval x -> Interval y) -> Sieve x -> Sieve y
50 fmap_interval f (Sieve ft) = Sieve (FT.fmap' f ft)
51
52 -- | Like 'Data.Functor.fmap' but working on 'Interval's,
53 -- and safe only if 'Measure' is preserved.
54 fmap_interval_unsafe
55 :: Ord x
56 => (Interval x -> Interval x)
57 -> Sieve x -> Sieve x
58 fmap_interval_unsafe f (Sieve ft) = Sieve (FT.unsafeFmap f ft)
59
60 -- | Like 'Data.Traversable.traverse' but working on 'Interval's.
61 traverse_interval
62 :: (Ord x, Ord y, Applicative f)
63 => (Interval x -> f (Interval y))
64 -> Sieve x -> f (Sieve y)
65 traverse_interval f (Sieve ft) = Sieve <$> (FT.traverse' f ft)
66
67 -- | Like 'Data.Traversable.traverse' but working on 'Interval's,
68 -- and safe only if 'Measure' is preserved.
69 traverse_interval_unsafe
70 :: (Ord x, Applicative f)
71 => (Interval x -> f (Interval x))
72 -> Sieve x -> f (Sieve x)
73 traverse_interval_unsafe f (Sieve ft) = Sieve <$> (FT.unsafeTraverse f ft)
74
75 -- | 'FT.Measure' of each leaf or node of the 'Sieve' 'FingerTree'.
76 data Measure x
77 = Measure_Empty -- ^ Measure of 'FT.empty' 'Fingertree'.
78 | Measure
79 { max_high_of_max_low :: Interval x
80 -- ^ An __'Interval' with the max 'high' 'Limit'__
81 -- __amongst those having the max 'low' 'Limit'__
82 -- (which is the 'max' 'Interval'
83 -- because of lexicographical ordering).
84 {- NOTE: not useful in the particular case of '..<..'-ordered 'Interval's
85 , max_high :: Interval x
86 -- ^ An __'Interval' with the max 'high' 'Limit'__
87 -- (which may be a different 'Interval'
88 -- as it can have a lower 'low' 'Limit',
89 -- and thus not be the 'max' 'Interval').
90 -}
91 }
92 instance Ord x => Monoid (Measure x) where
93 mempty = Measure_Empty
94
95 Measure_Empty `mappend` i = i
96 i `mappend` Measure_Empty = i
97 _i `mappend` j = Measure (max_high_of_max_low j)
98 {- NOTE: not useful in the particular case of '..<..'-ordered 'Interval's
99 i `mappend` j =
100 Measure (max_high_of_max_low j) $
101 case compare_without_adherence (high (max_high i)) (high (max_high j)) of
102 LT -> max_high j
103 EQ ->
104 case (adherence (high (max_high i)), adherence (high (max_high j))) of
105 (In , In) -> max_high i
106 (In , Out) -> max_high i
107 (Out, In) -> max_high j
108 (Out, Out) -> max_high i
109 GT -> max_high i
110 -}
111 instance Ord x => FT.Measured (Measure x) (Interval x) where
112 measure = Measure
113
114 empty :: Ord x => Sieve x
115 empty = Sieve $ FT.empty
116
117 -- | Return the 'True' iif. the given 'Sieve' is 'empty'.
118 null :: Ord x => Sieve x -> Bool
119 null (Sieve ft) = FT.null ft
120
121 singleton :: Ord x => Interval x -> Sieve x
122 singleton = Sieve . FT.singleton
123
124 -- | Return an 'Interval' with:
125 --
126 -- * the 'Interval.low' 'Interval.Limit' of the 'min' 'Interval',
127 -- * the 'Interval.high' 'Interval.Limit' of the 'max' 'Interval'.
128 interval :: Ord x => Sieve x -> Maybe (Interval x)
129 interval (Sieve ft) =
130 case FT.viewl ft of
131 FT.EmptyL -> Nothing
132 -- l :< ls | FT.null ls -> Just l
133 l :< _ ->
134 case FT.viewr ft of
135 FT.EmptyR -> Nothing
136 _ :> r -> Just $ Interval (low l, high r)
137
138 -- | All the 'Interval's of the 'Sieve' in '..<<..' order.
139 intervals :: Ord x => Sieve x -> [Interval x]
140 intervals (Sieve t) = Foldable.toList t
141
142 -- * Union
143
144 -- | Return a 'Sieve' merging the given 'Sieve's with 'Interval.union'.
145 union :: Ord x => Sieve x -> Sieve x -> Sieve x
146 union (Sieve s0) (Sieve s1) =
147 Sieve (merge s0 s1)
148 where
149 merge is js =
150 case FT.viewl is of
151 FT.EmptyL -> js
152 i :< gt_i ->
153 let (js_not_away_lt_i, js_away_gt_i ) = FT.split ( (i ..<<..) . max_high_of_max_low) js in
154 let (js_away_lt_i , js_not_away_i) = FT.split (not . (..<<.. i) . max_high_of_max_low) js_not_away_lt_i in
155 js_away_lt_i ><
156 -- NOTE: flip merge when possible
157 -- (i.e. when high i is majoring high-s of intersecting Interval-s)
158 -- to preserve complexity over commutativity.
159 case FT.viewl js_not_away_i of
160 FT.EmptyL -> i <| merge js_away_gt_i gt_i
161 lu :< us ->
162 case FT.viewr us of
163 FT.EmptyR ->
164 let u = lu in
165 case position i u of
166 (Adjacent, LT) -> merge gt_i (Interval (low i, high u) <| js_away_gt_i) -- flip: NO
167 (Overlap , LT) -> merge gt_i (Interval (low i, high u) <| js_away_gt_i) -- flip: NO
168 (Prefix , LT) -> merge gt_i (Interval (low i, high u) <| js_away_gt_i) -- flip: NO
169 (Include , GT) -> merge gt_i (u <| js_away_gt_i) -- flip: NO
170 (Suffixed, LT) -> i <| merge js_away_gt_i gt_i -- flip: YES
171 (Include , LT) -> i <| merge js_away_gt_i gt_i -- flip: YES
172 (Equal , _ ) -> i <| merge js_away_gt_i gt_i -- flip: YES
173 (Adjacent, GT) -> Interval (low u, high i) <| merge js_away_gt_i gt_i -- flip: YES
174 (Overlap , GT) -> Interval (low u, high i) <| merge js_away_gt_i gt_i -- flip: YES
175 (Prefix , GT) -> Interval (low u, high i) <| merge js_away_gt_i gt_i -- flip: YES
176 (Suffixed, GT) -> Interval (low u, high i) <| merge js_away_gt_i gt_i -- flip: YES
177 _ -> assert False undefined
178 _ :> hu ->
179 let l = low $
180 case position i lu of
181 (Adjacent, GT) -> lu
182 (Overlap , GT) -> lu
183 (Prefix , GT) -> lu
184 (Suffixed, GT) -> lu
185 _ -> i in
186 case position i hu of
187 (Adjacent, LT) -> merge gt_i (Interval (l, high hu) <| js_away_gt_i) -- flip: NO
188 (Overlap , LT) -> merge gt_i (Interval (l, high hu) <| js_away_gt_i) -- flip: NO
189 (Prefix , LT) -> merge gt_i (Interval (l, high hu) <| js_away_gt_i) -- flip: NO
190 _ -> Interval (l, high i) <| merge js_away_gt_i gt_i -- flip: YES
191
192 -- | Return a 'Sieve' merging the 'Interval's in the given 'Foldable' with 'Interval.union'.
193 from_Foldable :: (Foldable f, Ord x) => f (Interval x) -> Sieve x
194 from_Foldable = Foldable.foldr (union . singleton) empty
195
196 -- * Intersection
197
198 -- | Return a 'Sieve' merging the given 'Sieve's with 'Interval.intersection'.
199 intersection :: Ord x => Sieve x -> Sieve x -> Sieve x
200 intersection (Sieve s0) (Sieve s1) =
201 Sieve (merge s0 s1)
202 where
203 intersect i j = fromMaybe (assert False undefined) $ Interval.intersection i j
204 merge is js =
205 case FT.viewl is of
206 FT.EmptyL -> FT.empty
207 i :< gt_i ->
208 let (_, js_not_lt_i) = FT.split (not . (..<.. i) . max_high_of_max_low) js in
209 let (js_intersecting_i, _) = FT.split ( (i ..<..) . max_high_of_max_low) js_not_lt_i in
210 case FT.viewl js_intersecting_i of
211 li :< li' ->
212 intersect li i <|
213 case FT.viewr li' of
214 hi' :> hi -> hi' |> intersect i hi
215 _ -> li'
216 >< merge js_not_lt_i gt_i
217 _ -> merge js_not_lt_i gt_i
218 -- NOTE: swap merging to preserve complexity over commutativity
219
220 -- | All 'Interval's having a non-'Nothing' 'Interval.intersection' with the given 'Interval',
221 -- in '..<<..' order.
222 intersecting :: Ord x => Interval x -> Sieve x -> [Interval x]
223 intersecting i = Foldable.toList . unSieve . intersection (singleton i)
224
225 -- * Complement
226
227 -- | Return the 'Sieve' spanning over all the values not within the given 'Sieve'.
228 complement :: (Ord x, Bounded (Interval.Limit x)) => Sieve x -> Sieve x
229 complement = complement_with (Interval (minBound, maxBound))
230
231 -- | Return the 'Sieve' spanning over all the values not within the given 'Sieve',
232 -- but within the given 'Interval' which MUST be 'Interval.onto' every 'Interval' inside the 'Sieve'.
233 complement_with :: Ord x => Interval x -> Sieve x -> Sieve x
234 complement_with b (Sieve s) =
235 let (last_low, c) =
236 Foldable.foldr
237 (\i (previous_low, ft) ->
238 ( low i
239 , if (Interval.HH $ high i) < (Interval.HH $ high b)
240 then Interval (flip_limit $ high i, flip_limit previous_low) <| ft
241 else ft
242 ))
243 (flip_limit $ high b, FT.empty) s in
244 Sieve $
245 case compare (Interval.LL $ low b) (Interval.LL $ last_low) of
246 LT -> Interval (low b, flip_limit last_low) <| c
247 EQ | low b == high b && FT.null s -> FT.singleton b
248 _ -> c