]> Git — Sourcephile - comptalang.git/blob - lib/Hcompta/Lib/TreeMap.hs
Ajout : CLI.Command.Journal : chronométrage du parsage.
[comptalang.git] / lib / Hcompta / Lib / TreeMap.hs
1 {-# LANGUAGE DeriveDataTypeable #-}
2 {-# LANGUAGE NamedFieldPuns #-}
3
4 -- | This module implements a 'TreeMap',
5 -- which is like a 'Map'
6 -- but whose key is now a 'NonEmpty' list of 'Map' keys (a 'Path')
7 -- enabling the possibility to gather mapped values
8 -- by 'Path' prefixes (inside a 'Node').
9 module Hcompta.Lib.TreeMap where
10
11 -- import Control.Applicative ((<$>), (<*>), pure)
12 import Data.Data (Data)
13 -- import Data.Foldable (Foldable)
14 import qualified Data.List
15 import qualified Data.List.NonEmpty
16 import Data.List.NonEmpty (NonEmpty(..))
17 import qualified Data.Map.Strict as Data.Map
18 import Data.Map.Strict (Map)
19 -- import Data.Monoid (Monoid(..))
20 -- import Data.Traversable (Traversable(..))
21 import Data.Typeable (Typeable)
22 import Prelude hiding (filter, null, reverse)
23
24 -- * Type 'TreeMap'
25
26 newtype TreeMap k x
27 = TreeMap (Map k (Node k x))
28 deriving (Data, Eq, Read, Show, Typeable)
29
30 instance (Ord k, Monoid v) => Monoid (TreeMap k v) where
31 mempty = empty
32 mappend = union const
33 -- mconcat = Data.List.foldr mappend mempty
34 instance Ord k => Functor (TreeMap k) where
35 fmap f (TreeMap m) = TreeMap $ fmap (fmap f) m
36 instance Ord k => Foldable (TreeMap k) where
37 foldMap f (TreeMap m) = foldMap (foldMap f) m
38 instance Ord k => Traversable (TreeMap k) where
39 traverse f (TreeMap m) = TreeMap <$> traverse (traverse f) m
40
41 -- * Type 'Path'
42
43 -- | A 'Path' is a non-empty list of 'Map' keys.
44 type Path k = NonEmpty k
45
46 path :: k -> [k] -> Path k
47 path = (:|)
48
49 list :: Path k -> [k]
50 list = Data.List.NonEmpty.toList
51
52 reverse :: Path k -> Path k
53 reverse = Data.List.NonEmpty.reverse
54
55 -- * Type 'Node'
56 data Ord k
57 => Node k x
58 = Node
59 { node_size :: Int -- ^ The number of non-'Nothing' 'node_value's reachable from this 'Node'.
60 , node_value :: Maybe x -- ^ Some value, or 'Nothing' if this 'Node' is intermediary.
61 , node_descendants :: TreeMap k x -- ^ Descendants 'Node's.
62 } deriving (Data, Eq, Read, Show, Typeable)
63
64 instance (Ord k, Monoid v) => Monoid (Node k v) where
65 mempty =
66 Node
67 { node_value = Nothing
68 , node_size = 0
69 , node_descendants = TreeMap mempty
70 }
71 mappend
72 Node{node_value=x0, node_descendants=m0}
73 Node{node_value=x1, node_descendants=m1} =
74 let m = union const m0 m1 in
75 let x = x0 `mappend` x1 in
76 Node
77 { node_value = x
78 , node_size = size m + maybe 0 (const 1) x
79 , node_descendants = union const m0 m1
80 }
81 -- mconcat = Data.List.foldr mappend mempty
82
83 instance Ord k => Functor (Node k) where
84 fmap f Node{node_value=x, node_descendants=m, node_size} =
85 Node
86 { node_value = fmap f x
87 , node_descendants = Hcompta.Lib.TreeMap.map f m
88 , node_size
89 }
90
91 instance Ord k => Foldable (Node k) where
92 foldMap f Node{node_value=Nothing, node_descendants=TreeMap m} =
93 foldMap (foldMap f) m
94 foldMap f Node{node_value=Just x, node_descendants=TreeMap m} =
95 f x `mappend` foldMap (foldMap f) m
96
97 instance Ord k => Traversable (Node k) where
98 traverse f Node{node_value=Nothing, node_descendants=TreeMap m, node_size} =
99 Node node_size <$> pure Nothing <*> (TreeMap <$> traverse (traverse f) m)
100 traverse f Node{node_value=Just x, node_descendants=TreeMap m, node_size} =
101 Node node_size <$> (Just <$> f x) <*> (TreeMap <$> traverse (traverse f) m)
102
103 -- * Construct
104
105 -- | Return the empty 'TreeMap'.
106 empty :: TreeMap k x
107 empty = TreeMap Data.Map.empty
108
109 -- | Return a 'TreeMap' only mapping the given 'Path' to the given value.
110 singleton :: Ord k => Path k -> x -> TreeMap k x
111 singleton ks x = insert const ks x empty
112
113 -- | Return a 'Node' only containing the given value.
114 leaf :: Ord k => x -> Node k x
115 leaf x =
116 Node
117 { node_value = Just x
118 , node_descendants = empty
119 , node_size = 1
120 }
121
122 -- | Return the given 'TreeMap' associating the given 'Path' with the given value,
123 -- merging values if the given 'TreeMap' already associates the given 'Path'
124 -- with a non-'Nothing' 'node_value'.
125 insert :: Ord k => (x -> x -> x) -> Path k -> x -> TreeMap k x -> TreeMap k x
126 insert merge (k:|[]) x (TreeMap m) =
127 TreeMap $
128 Data.Map.insertWith
129 (\_ Node{node_value=x1, node_descendants=m1, node_size=s1} ->
130 Node
131 { node_value = maybe (Just x) (Just . merge x) x1
132 , node_descendants = m1
133 , node_size = maybe (s1 + 1) (const s1) x1
134 })
135 k (leaf x) m
136 insert merge (k:|k':ks) x (TreeMap m) =
137 TreeMap $
138 Data.Map.insertWith
139 (\_ Node{node_value=x1, node_descendants=m1} ->
140 let m' = insert merge (path k' ks) x m1 in
141 Node{node_value=x1, node_descendants=m', node_size=size m' + maybe 0 (const 1) x1})
142 k
143 (Node
144 { node_value = Nothing
145 , node_descendants = insert merge (path k' ks) x empty
146 , node_size = 1
147 })
148 m
149
150 -- | Return a 'TreeMap' associating for each tuple of the given list
151 -- the 'Path' to the value,
152 -- merging values of identical 'Path's (in respective order).
153 from_List :: Ord k => (x -> x -> x) -> [(Path k, x)] -> TreeMap k x
154 from_List merge = Data.List.foldl (\acc (p, x) -> insert merge p x acc) empty
155
156 -- | Return a 'TreeMap' associating for each key and value of the given 'Map'
157 -- the 'Path' to the value,
158 -- merging values of identical 'Path's (in respective order).
159 from_Map :: Ord k => (x -> x -> x) -> Map (Path k) x -> TreeMap k x
160 from_Map merge = Data.Map.foldlWithKey (\acc p x -> insert merge p x acc) empty
161
162 -- * Size
163
164 -- | Return the 'Map' in the given 'TreeMap'.
165 nodes :: TreeMap k x -> Map k (Node k x)
166 nodes (TreeMap m) = m
167
168 -- | Return 'True' iif. the given 'TreeMap' is 'empty'.
169 null :: TreeMap k x -> Bool
170 null (TreeMap m) = Data.Map.null m
171
172 -- | Return the number of non-'Nothing' 'node_value's in the given 'TreeMap'.
173 --
174 -- * Complexity: O(r) where r is the size of the root 'Map'.
175 size :: Ord k => TreeMap k x -> Int
176 size = Data.Map.foldr ((+) . node_size) 0 . nodes
177
178 -- * Find
179
180 -- | Return the value (if any) associated with the given 'Path'.
181 find :: Ord k => Path k -> TreeMap k x -> Maybe x
182 find (k:|[]) (TreeMap m) = maybe Nothing node_value $ Data.Map.lookup k m
183 find (k:|k':ks) (TreeMap m) =
184 maybe Nothing (find (path k' ks) . node_descendants) $
185 Data.Map.lookup k m
186
187 -- * Union
188
189 -- | Return a 'TreeMap' associating the same 'Path's as both given 'TreeMap's,
190 -- merging values (in respective order) when a 'Path' leads
191 -- to a non-'Nothing' 'node_value' in both given 'TreeMap's.
192 union :: Ord k => (x -> x -> x) -> TreeMap k x -> TreeMap k x -> TreeMap k x
193 union merge (TreeMap tm0) (TreeMap tm1) =
194 TreeMap $
195 Data.Map.unionWith
196 (\Node{node_value=x0, node_descendants=m0}
197 Node{node_value=x1, node_descendants=m1} ->
198 let m = union merge m0 m1 in
199 let x = maybe x1 (\x0' -> maybe (Just x0') (Just . merge x0') x1) x0 in
200 Node
201 { node_value = x
202 , node_descendants = m
203 , node_size = size m + maybe 0 (const 1) x
204 })
205 tm0 tm1
206
207 -- | Return the 'union' of the given 'TreeMap's.
208 --
209 -- NOTE: use 'Data.List.foldl'' to reduce demand on the control-stack.
210 unions :: Ord k => (x -> x -> x) -> [TreeMap k x] -> TreeMap k x
211 unions merge ts = Data.List.foldl' (union merge) empty ts
212
213 -- foldl' :: (a -> b -> a) -> a -> [b] -> a
214 -- foldl' f = go
215 -- where
216 -- go z [] = z
217 -- go z (x:xs) = z `seq` go (f z x) xs
218
219 -- * Map
220
221 -- | Return the given 'TreeMap' with each non-'Nothing' 'node_value'
222 -- mapped by the given function.
223 map :: Ord k => (x -> y) -> TreeMap k x -> TreeMap k y
224 map f =
225 TreeMap .
226 Data.Map.map
227 (\n@Node{node_value=x, node_descendants=m} ->
228 n{ node_value=maybe Nothing (Just . f) x
229 , node_descendants=Hcompta.Lib.TreeMap.map f m
230 }) .
231 nodes
232
233 -- | Return the given 'TreeMap' with each 'node_value'
234 -- mapped by the given function supplied with
235 -- the already mapped 'node_descendants' of the current 'Node'.
236 map_by_depth_first :: Ord k => (TreeMap k y -> Maybe x -> y) -> TreeMap k x -> TreeMap k y
237 map_by_depth_first f =
238 TreeMap .
239 Data.Map.map
240 (\n@Node{node_value, node_descendants} ->
241 let m = map_by_depth_first f node_descendants in
242 let x = f m node_value in
243 n{ node_value = Just x
244 , node_descendants = m
245 , node_size = size m + 1
246 }) .
247 nodes
248
249 -- * Alter
250
251 alterl_path :: Ord k => (Maybe x -> Maybe x) -> Path k -> TreeMap k x -> TreeMap k x
252 alterl_path fct =
253 go fct . list
254 where
255 go :: Ord k
256 => (Maybe x -> Maybe x) -> [k]
257 -> TreeMap k x -> TreeMap k x
258 go _f [] m = m
259 go f (k:p) (TreeMap m) =
260 TreeMap $
261 Data.Map.alter
262 (\c ->
263 let (cv, cm) =
264 case c of
265 Just Node{node_value=v, node_descendants=d} -> (v, d)
266 Nothing -> (Nothing, empty) in
267 let fx = f cv in
268 let gm = go f p cm in
269 case (fx, size gm) of
270 (Nothing, 0) -> Nothing
271 (_, s) -> Just
272 Node
273 { node_value = fx
274 , node_descendants = gm
275 , node_size = s + 1
276 }
277 ) k m
278
279 -- * Fold
280
281 -- | Return the given accumulator folded by the given function
282 -- applied on non-'Nothing' 'node_value's
283 -- from left to right through the given 'TreeMap'.
284 foldl_with_Path :: Ord k => (a -> Path k -> x -> a) -> a -> TreeMap k x -> a
285 foldl_with_Path =
286 foldp []
287 where
288 foldp :: Ord k
289 => [k] -> (a -> Path k -> x -> a)
290 -> a -> TreeMap k x -> a
291 foldp p fct a (TreeMap m) =
292 Data.Map.foldlWithKey
293 (\acc k Node{node_value, node_descendants} ->
294 let acc' = maybe acc (fct acc (reverse $ path k p)) node_value in
295 foldp (k:p) fct acc' node_descendants) a m
296
297 -- | Return the given accumulator folded by the given function
298 -- applied on non-'Nothing' 'Node's and 'node_value's
299 -- from left to right through the given 'TreeMap'.
300 foldl_with_Path_and_Node :: Ord k => (a -> Node k x -> Path k -> x -> a) -> a -> TreeMap k x -> a
301 foldl_with_Path_and_Node =
302 foldp []
303 where
304 foldp :: Ord k
305 => [k] -> (a -> Node k x -> Path k -> x -> a)
306 -> a -> TreeMap k x -> a
307 foldp p fct a (TreeMap m) =
308 Data.Map.foldlWithKey
309 (\acc k n@Node{node_value, node_descendants} ->
310 let acc' = maybe acc (fct acc n (reverse $ path k p)) node_value in
311 foldp (k:p) fct acc' node_descendants) a m
312
313 -- | Return the given accumulator folded by the given function
314 -- applied on non-'Nothing' 'node_value's
315 -- from right to left through the given 'TreeMap'.
316 foldr_with_Path :: Ord k => (Path k -> x -> a -> a) -> a -> TreeMap k x -> a
317 foldr_with_Path =
318 foldp []
319 where
320 foldp :: Ord k
321 => [k] -> (Path k -> x -> a -> a)
322 -> a -> TreeMap k x -> a
323 foldp p fct a (TreeMap m) =
324 Data.Map.foldrWithKey
325 (\k Node{node_value, node_descendants} acc ->
326 let acc' = foldp (k:p) fct acc node_descendants in
327 maybe acc' (\x -> fct (reverse $ path k p) x acc') node_value) a m
328
329 -- | Return the given accumulator folded by the given function
330 -- applied on non-'Nothing' 'Node's and 'node_value's
331 -- from right to left through the given 'TreeMap'.
332 foldr_with_Path_and_Node :: Ord k => (Node k x -> Path k -> x -> a -> a) -> a -> TreeMap k x -> a
333 foldr_with_Path_and_Node =
334 foldp []
335 where
336 foldp :: Ord k
337 => [k] -> (Node k x -> Path k -> x -> a -> a)
338 -> a -> TreeMap k x -> a
339 foldp p fct a (TreeMap m) =
340 Data.Map.foldrWithKey
341 (\k n@Node{node_value, node_descendants} acc ->
342 let acc' = foldp (k:p) fct acc node_descendants in
343 maybe acc' (\x -> fct n (reverse $ path k p) x acc') node_value) a m
344
345 -- | Return the given accumulator folded by the given function
346 -- applied on non-'Nothing' 'node_value's
347 -- from left to right along the given 'Path'.
348 foldl_path :: Ord k => (Path k -> x -> a -> a) -> Path k -> TreeMap k x -> a -> a
349 foldl_path fct =
350 go fct [] . list
351 where
352 go :: Ord k
353 => (Path k -> x -> a -> a) -> [k] -> [k]
354 -> TreeMap k x -> a -> a
355 go _f _ [] _t a = a
356 go f p (k:n) (TreeMap t) a =
357 case Data.Map.lookup k t of
358 Nothing -> a
359 Just Node{node_value=v, node_descendants=d} ->
360 case v of
361 Nothing -> go f (k:p) n d a
362 Just x -> go f (k:p) n d (f (reverse $ path k p) x a)
363
364 -- | Return the given accumulator folded by the given function
365 -- applied on non-'Nothing' 'node_value's
366 -- from right to left along the given 'Path'.
367 foldr_path :: Ord k => (Path k -> x -> a -> a) -> Path k -> TreeMap k x -> a -> a
368 foldr_path fct =
369 go fct [] . list
370 where
371 go :: Ord k
372 => (Path k -> x -> a -> a) -> [k] -> [k]
373 -> TreeMap k x -> a -> a
374 go _f _ [] _t a = a
375 go f p (k:n) (TreeMap t) a =
376 case Data.Map.lookup k t of
377 Nothing -> a
378 Just Node{node_value=v, node_descendants=d} ->
379 case v of
380 Nothing -> go f (k:p) n d a
381 Just x -> f (reverse $ path k p) x $ go f (k:p) n d a
382
383 -- * Flatten
384
385 -- | Return a 'Map' associating each 'Path'
386 -- leading to a non-'Nothing' 'node_value' in the given 'TreeMap',
387 -- with its value mapped by the given function.
388 flatten :: Ord k => (x -> y) -> TreeMap k x -> Map (Path k) y
389 flatten =
390 flat_map []
391 where
392 flat_map :: Ord k
393 => [k] -> (x -> y)
394 -> TreeMap k x
395 -> Map (Path k) y
396 flat_map p f (TreeMap m) =
397 Data.Map.unions $
398 (
399 Data.Map.mapKeysMonotonic (reverse . flip path p) $
400 Data.Map.mapMaybe (\Node{node_value=x} -> f <$> x) m
401 ) :
402 Data.Map.foldrWithKey
403 (\k -> (:) . flat_map (k:p) f . node_descendants)
404 [] m
405
406 -- * Filter
407
408 -- | Return the given 'TreeMap'
409 -- keeping only its non-'Nothing' 'node_value's
410 -- passing the given predicate.
411 filter :: Ord k => (x -> Bool) -> TreeMap k x -> TreeMap k x
412 filter f =
413 map_Maybe_with_Path
414 (\_p x -> if f x then Just x else Nothing)
415
416 -- | Like 'filter' but with also the current 'Path' given to the predicate.
417 filter_with_Path :: Ord k => (Path k -> x -> Bool) -> TreeMap k x -> TreeMap k x
418 filter_with_Path f =
419 map_Maybe_with_Path
420 (\p x -> if f p x then Just x else Nothing)
421
422 -- | Like 'filter_with_Path' but with also the current 'Node' given to the predicate.
423 filter_with_Path_and_Node :: Ord k => (Node k x -> Path k -> x -> Bool) -> TreeMap k x -> TreeMap k x
424 filter_with_Path_and_Node f =
425 map_Maybe_with_Path_and_Node
426 (\n p x -> if f n p x then Just x else Nothing)
427
428 -- | Return the given 'TreeMap'
429 -- mapping its non-'Nothing' 'node_value's
430 -- and keeping only the non-'Nothing' results.
431 map_Maybe :: Ord k => (x -> Maybe y) -> TreeMap k x -> TreeMap k y
432 map_Maybe f = map_Maybe_with_Path (const f)
433
434 -- | Like 'map_Maybe' but with also the current 'Path' given to the predicate.
435 map_Maybe_with_Path :: Ord k => (Path k -> x -> Maybe y) -> TreeMap k x -> TreeMap k y
436 map_Maybe_with_Path f = map_Maybe_with_Path_and_Node (const f)
437
438 -- | Like 'map_Maybe_with_Path' but with also the current 'Node' given to the predicate.
439 map_Maybe_with_Path_and_Node :: Ord k => (Node k x -> Path k -> x -> Maybe y) -> TreeMap k x -> TreeMap k y
440 map_Maybe_with_Path_and_Node =
441 go []
442 where
443 go :: Ord k
444 => [k] -> (Node k x -> Path k -> x -> Maybe y)
445 -> TreeMap k x
446 -> TreeMap k y
447 go p test (TreeMap m) =
448 TreeMap $
449 Data.Map.mapMaybeWithKey
450 (\k node@Node{node_value=v, node_descendants=ns} ->
451 let node_descendants = go (k:p) test ns in
452 let node_size = size node_descendants in
453 case v of
454 Just x ->
455 let node_value = test node (reverse $ path k p) x in
456 case node_value of
457 Nothing | null node_descendants -> Nothing
458 Nothing -> Just Node{node_value, node_descendants, node_size=1 + node_size}
459 Just _ -> Just Node{node_value, node_descendants, node_size}
460 _ ->
461 if null node_descendants
462 then Nothing
463 else Just Node{node_value=Nothing, node_descendants, node_size}
464 ) m