]> Git — Sourcephile - comptalang.git/blob - lib/Hcompta/Lib/Interval/Sieve.hs
Ajout : Chart : Tags : Équilibre.
[comptalang.git] / lib / Hcompta / Lib / Interval / Sieve.hs
1 {-# LANGUAGE FlexibleContexts #-}
2 {-# LANGUAGE FlexibleInstances #-}
3 {-# LANGUAGE MultiParamTypeClasses #-}
4 {-# LANGUAGE TupleSections #-}
5 {-# LANGUAGE TypeFamilies #-}
6 {-# OPTIONS_GHC -fno-warn-orphans #-}
7 module Hcompta.Lib.Interval.Sieve where
8
9 import Control.Applicative (Applicative(..))
10 import Control.Exception (assert)
11 import Data.Bool
12 import Data.Eq (Eq(..))
13 import Data.Ord (Ordering(..))
14 import qualified Data.FingerTree as FT
15 import Data.FingerTree (FingerTree, ViewL(..), ViewR(..), (><), (<|), (|>))
16 import Data.Foldable (Foldable)
17 import qualified Data.Foldable as Foldable
18 import Data.Functor ((<$>))
19 import qualified Data.List
20 import Data.Maybe (Maybe(..), fromMaybe)
21 import Data.Monoid (Monoid(..))
22 import Prelude ( ($)
23 , (.)
24 , Bounded(..)
25 , Ord(..)
26 , Show(..)
27 , undefined
28 )
29
30 import qualified Hcompta.Lib.Interval as Interval
31 import Hcompta.Lib.Interval (Interval(..), low, high, (..<..), (..<<..), Position(..), position, flip_limit, Pretty(..))
32
33
34 -- * Type 'Sieve'
35
36 -- | '..<<..'-ordered union of 'Interval's.
37 --
38 -- Ressources:
39 --
40 -- * Ralf Hinze and Ross Paterson,
41 -- \"Finger trees: a simple general-purpose data structure\",
42 -- /Journal of Functional Programming/ 16:2 (2006) pp 197-217.
43 -- <http://staff.city.ac.uk/~ross/papers/FingerTree.html>
44 -- * <https://hackage.haskell.org/package/fingertree/docs/Data-IntervalMap-FingerTree.html>
45 newtype Sieve x =
46 Sieve { unSieve :: FingerTree (Measure x) (Interval x) }
47
48 instance (Ord x, Show x) => Show (Pretty (Sieve x)) where
49 show (Pretty s) | Hcompta.Lib.Interval.Sieve.null s = "empty"
50 show (Pretty s) = Data.List.intercalate " u " $ Data.List.map (show . Pretty) $ intervals s
51
52 -- | Like 'Data.Functor.fmap' but working on 'Interval's.
53 fmap_interval
54 :: (Ord x, Ord y)
55 => (Interval x -> Interval y) -> Sieve x -> Sieve y
56 fmap_interval f (Sieve ft) = Sieve (FT.fmap' f ft)
57
58 -- | Like 'Data.Functor.fmap' but working on 'Interval's,
59 -- and safe only if 'Measure' is preserved.
60 fmap_interval_unsafe
61 :: Ord x
62 => (Interval x -> Interval x)
63 -> Sieve x -> Sieve x
64 fmap_interval_unsafe f (Sieve ft) = Sieve (FT.unsafeFmap f ft)
65
66 -- | Like 'Data.Traversable.traverse' but working on 'Interval's.
67 traverse_interval
68 :: (Ord x, Ord y, Applicative f)
69 => (Interval x -> f (Interval y))
70 -> Sieve x -> f (Sieve y)
71 traverse_interval f (Sieve ft) = Sieve <$> (FT.traverse' f ft)
72
73 -- | Like 'Data.Traversable.traverse' but working on 'Interval's,
74 -- and safe only if 'Measure' is preserved.
75 traverse_interval_unsafe
76 :: (Ord x, Applicative f)
77 => (Interval x -> f (Interval x))
78 -> Sieve x -> f (Sieve x)
79 traverse_interval_unsafe f (Sieve ft) = Sieve <$> (FT.unsafeTraverse f ft)
80
81 -- | 'FT.Measure' of each leaf or node of the 'Sieve' 'FingerTree'.
82 data Measure x
83 = Measure_Empty -- ^ Measure of 'FT.empty' 'Fingertree'.
84 | Measure
85 { max_high_of_max_low :: Interval x
86 -- ^ An __'Interval' with the max 'high' 'Limit'__
87 -- __amongst those having the max 'low' 'Limit'__
88 -- (which is the 'max' 'Interval'
89 -- because of lexicographical ordering).
90 {- NOTE: not useful in the particular case of '..<..'-ordered 'Interval's
91 , max_high :: Interval x
92 -- ^ An __'Interval' with the max 'high' 'Limit'__
93 -- (which may be a different 'Interval'
94 -- as it can have a lower 'low' 'Limit',
95 -- and thus not be the 'max' 'Interval').
96 -}
97 }
98 instance Ord x => Monoid (Measure x) where
99 mempty = Measure_Empty
100
101 Measure_Empty `mappend` i = i
102 i `mappend` Measure_Empty = i
103 _i `mappend` j = Measure (max_high_of_max_low j)
104 {- NOTE: not useful in the particular case of '..<..'-ordered 'Interval's
105 i `mappend` j =
106 Measure (max_high_of_max_low j) $
107 case compare_without_adherence (high (max_high i)) (high (max_high j)) of
108 LT -> max_high j
109 EQ ->
110 case (adherence (high (max_high i)), adherence (high (max_high j))) of
111 (In , In) -> max_high i
112 (In , Out) -> max_high i
113 (Out, In) -> max_high j
114 (Out, Out) -> max_high i
115 GT -> max_high i
116 -}
117 instance Ord x => FT.Measured (Measure x) (Interval x) where
118 measure = Measure
119
120 empty :: Ord x => Sieve x
121 empty = Sieve $ FT.empty
122
123 -- | Return the 'True' iif. the given 'Sieve' is 'empty'.
124 null :: Ord x => Sieve x -> Bool
125 null (Sieve ft) = FT.null ft
126
127 singleton :: Ord x => Interval x -> Sieve x
128 singleton = Sieve . FT.singleton
129
130 -- | Return an 'Interval' with:
131 --
132 -- * the 'Interval.low' 'Interval.Limit' of the 'min' 'Interval',
133 -- * the 'Interval.high' 'Interval.Limit' of the 'max' 'Interval'.
134 interval :: Ord x => Sieve x -> Maybe (Interval x)
135 interval (Sieve ft) =
136 case FT.viewl ft of
137 FT.EmptyL -> Nothing
138 -- l :< ls | FT.null ls -> Just l
139 l :< _ ->
140 case FT.viewr ft of
141 FT.EmptyR -> Nothing
142 _ :> r -> Just $ Interval (low l, high r)
143
144 -- | All the 'Interval's of the 'Sieve' in '..<<..' order.
145 intervals :: Ord x => Sieve x -> [Interval x]
146 intervals (Sieve t) = Foldable.toList t
147
148 -- * Union
149
150 -- | Return a 'Sieve' merging the given 'Sieve's with 'Interval.union'.
151 union :: Ord x => Sieve x -> Sieve x -> Sieve x
152 union (Sieve s0) (Sieve s1) =
153 Sieve (merge s0 s1)
154 where
155 merge is js =
156 case FT.viewl is of
157 FT.EmptyL -> js
158 i :< gt_i ->
159 let (js_not_away_lt_i, js_away_gt_i ) = FT.split ( (i ..<<..) . max_high_of_max_low) js in
160 let (js_away_lt_i , js_not_away_i) = FT.split (not . (..<<.. i) . max_high_of_max_low) js_not_away_lt_i in
161 js_away_lt_i ><
162 -- NOTE: flip merge when possible
163 -- (i.e. when high i is majoring high-s of intersecting Interval-s)
164 -- to preserve complexity over commutativity.
165 case FT.viewl js_not_away_i of
166 FT.EmptyL -> i <| merge js_away_gt_i gt_i
167 lu :< us ->
168 case FT.viewr us of
169 FT.EmptyR ->
170 let u = lu in
171 case position i u of
172 (Adjacent, LT) -> merge gt_i (Interval (low i, high u) <| js_away_gt_i) -- flip: NO
173 (Overlap , LT) -> merge gt_i (Interval (low i, high u) <| js_away_gt_i) -- flip: NO
174 (Prefix , LT) -> merge gt_i (Interval (low i, high u) <| js_away_gt_i) -- flip: NO
175 (Include , GT) -> merge gt_i (u <| js_away_gt_i) -- flip: NO
176 (Suffixed, LT) -> i <| merge js_away_gt_i gt_i -- flip: YES
177 (Include , LT) -> i <| merge js_away_gt_i gt_i -- flip: YES
178 (Equal , _ ) -> i <| merge js_away_gt_i gt_i -- flip: YES
179 (Adjacent, GT) -> Interval (low u, high i) <| merge js_away_gt_i gt_i -- flip: YES
180 (Overlap , GT) -> Interval (low u, high i) <| merge js_away_gt_i gt_i -- flip: YES
181 (Prefix , GT) -> Interval (low u, high i) <| merge js_away_gt_i gt_i -- flip: YES
182 (Suffixed, GT) -> Interval (low u, high i) <| merge js_away_gt_i gt_i -- flip: YES
183 _ -> assert False undefined
184 _ :> hu ->
185 let l = low $
186 case position i lu of
187 (Adjacent, GT) -> lu
188 (Overlap , GT) -> lu
189 (Prefix , GT) -> lu
190 (Suffixed, GT) -> lu
191 _ -> i in
192 case position i hu of
193 (Adjacent, LT) -> merge gt_i (Interval (l, high hu) <| js_away_gt_i) -- flip: NO
194 (Overlap , LT) -> merge gt_i (Interval (l, high hu) <| js_away_gt_i) -- flip: NO
195 (Prefix , LT) -> merge gt_i (Interval (l, high hu) <| js_away_gt_i) -- flip: NO
196 _ -> Interval (l, high i) <| merge js_away_gt_i gt_i -- flip: YES
197
198 -- | Return a 'Sieve' merging the 'Interval's in the given 'Foldable' with 'Interval.union'.
199 from_Foldable :: (Foldable f, Ord x) => f (Interval x) -> Sieve x
200 from_Foldable = Foldable.foldr (union . singleton) empty
201
202 -- * Intersection
203
204 -- | Return a 'Sieve' merging the given 'Sieve's with 'Interval.intersection'.
205 intersection :: Ord x => Sieve x -> Sieve x -> Sieve x
206 intersection (Sieve s0) (Sieve s1) =
207 Sieve (merge s0 s1)
208 where
209 intersect i j = fromMaybe (assert False undefined) $ Interval.intersection i j
210 merge is js =
211 case FT.viewl is of
212 FT.EmptyL -> FT.empty
213 i :< gt_i ->
214 let (_, js_not_lt_i) = FT.split (not . (..<.. i) . max_high_of_max_low) js in
215 let (js_intersecting_i, _) = FT.split ( (i ..<..) . max_high_of_max_low) js_not_lt_i in
216 case FT.viewl js_intersecting_i of
217 li :< li' ->
218 intersect li i <|
219 case FT.viewr li' of
220 hi' :> hi -> hi' |> intersect i hi
221 _ -> li'
222 >< merge js_not_lt_i gt_i
223 _ -> merge js_not_lt_i gt_i
224 -- NOTE: swap merging to preserve complexity over commutativity
225
226 -- | All 'Interval's having a non-'Nothing' 'Interval.intersection' with the given 'Interval',
227 -- in '..<<..' order.
228 intersecting :: Ord x => Interval x -> Sieve x -> [Interval x]
229 intersecting i = Foldable.toList . unSieve . intersection (singleton i)
230
231 -- * Complement
232
233 -- | Return the 'Sieve' spanning over all the values not within the given 'Sieve'.
234 complement :: (Ord x, Bounded (Interval.Limit x)) => Sieve x -> Sieve x
235 complement = complement_with (Interval (minBound, maxBound))
236
237 -- | Return the 'Sieve' spanning over all the values not within the given 'Sieve',
238 -- but within the given 'Interval' which MUST be 'Interval.onto' every 'Interval' inside the 'Sieve'.
239 complement_with :: Ord x => Interval x -> Sieve x -> Sieve x
240 complement_with b (Sieve s) =
241 let (last_low, c) =
242 Foldable.foldr
243 (\i (previous_low, ft) ->
244 ( low i
245 , if (Interval.HH $ high i) < (Interval.HH $ high b)
246 then Interval (flip_limit $ high i, flip_limit previous_low) <| ft
247 else ft
248 ))
249 (flip_limit $ high b, FT.empty) s in
250 Sieve $
251 case compare (Interval.LL $ low b) (Interval.LL $ last_low) of
252 LT -> Interval (low b, flip_limit last_low) <| c
253 EQ | low b == high b && FT.null s -> FT.singleton b
254 _ -> c