]> Git — Sourcephile - comptalang.git/blob - lib/Hcompta/Lib/TreeMap.hs
Ajout : Chart : Tags : Équilibre.
[comptalang.git] / lib / Hcompta / Lib / TreeMap.hs
1 {-# LANGUAGE DeriveDataTypeable #-}
2 {-# LANGUAGE NamedFieldPuns #-}
3
4 -- | This module implements a strict 'TreeMap',
5 -- which is like a 'Map'
6 -- but whose key is now a 'NonEmpty' list of 'Map' keys (a 'Path')
7 -- enabling the possibility to gather mapped values
8 -- by 'Path' prefixes (inside a 'Node').
9 module Hcompta.Lib.TreeMap where
10
11 import Control.Applicative ((<$>), (<*>), pure)
12 import Control.DeepSeq (NFData(..))
13 import Data.Bool
14 import Data.Eq (Eq)
15 import Data.Data (Data)
16 import Data.Foldable (Foldable, foldMap)
17 import Data.Functor (Functor(..))
18 import Data.Ord (Ord(..))
19 import qualified Data.List
20 import qualified Data.List.NonEmpty
21 import Data.List.NonEmpty (NonEmpty(..))
22 import Data.Map.Strict (Map)
23 import qualified Data.Map.Strict as Data.Map
24 import Data.Maybe (Maybe(..), maybe)
25 import Data.Monoid (Monoid(..))
26 import qualified Data.Strict.Maybe as Strict
27 import Data.Traversable (Traversable(..))
28 import Data.Typeable (Typeable)
29 import Prelude (($), (.), Int, Num(..), Show, const, flip, id, seq)
30
31 import qualified Hcompta.Lib.Strict as Strict ()
32
33 -- * Type 'TreeMap'
34
35 newtype TreeMap k x
36 = TreeMap (Map k (Node k x))
37 deriving (Data, Eq, Show, Typeable)
38
39 instance (Ord k, Monoid v) => Monoid (TreeMap k v) where
40 mempty = empty
41 mappend = union mappend
42 -- mconcat = Data.List.foldr mappend mempty
43 instance Ord k => Functor (TreeMap k) where
44 fmap f (TreeMap m) = TreeMap $ fmap (fmap f) m
45 instance Ord k => Foldable (TreeMap k) where
46 foldMap f (TreeMap m) = foldMap (foldMap f) m
47 instance Ord k => Traversable (TreeMap k) where
48 traverse f (TreeMap m) = TreeMap <$> traverse (traverse f) m
49 instance (Ord k, NFData k, NFData x) => NFData (TreeMap k x) where
50 rnf (TreeMap m) = rnf m
51
52 -- * Type 'Path'
53
54 -- | A 'Path' is a non-empty list of 'Map' keys.
55 type Path k = NonEmpty k
56
57 path :: k -> [k] -> Path k
58 path = (:|)
59
60 list :: Path k -> [k]
61 list = Data.List.NonEmpty.toList
62
63 reverse :: Path k -> Path k
64 reverse = Data.List.NonEmpty.reverse
65
66 -- * Type 'Node'
67 data Ord k
68 => Node k x
69 = Node
70 { node_size :: !Int -- ^ The number of non-'Strict.Nothing' 'node_value's reachable from this 'Node'.
71 , node_value :: !(Strict.Maybe x) -- ^ Some value, or 'Strict.Nothing' if this 'Node' is intermediary.
72 , node_descendants :: !(TreeMap k x) -- ^ Descendants 'Node's.
73 } deriving (Data, Eq, Show, Typeable)
74
75
76 instance (Ord k, Monoid v) => Monoid (Node k v) where
77 mempty =
78 Node
79 { node_value = Strict.Nothing
80 , node_size = 0
81 , node_descendants = TreeMap mempty
82 }
83 mappend
84 Node{node_value=x0, node_descendants=m0}
85 Node{node_value=x1, node_descendants=m1} =
86 let m = union const m0 m1 in
87 let x = x0 `mappend` x1 in
88 Node
89 { node_value = x
90 , node_size = size m + Strict.maybe 0 (const 1) x
91 , node_descendants = union const m0 m1
92 }
93 -- mconcat = Data.List.foldr mappend mempty
94 instance Ord k => Functor (Node k) where
95 fmap f Node{node_value=x, node_descendants=m, node_size} =
96 Node
97 { node_value = fmap f x
98 , node_descendants = Hcompta.Lib.TreeMap.map f m
99 , node_size
100 }
101 instance Ord k => Foldable (Node k) where
102 foldMap f Node{node_value=Strict.Nothing, node_descendants=TreeMap m} =
103 foldMap (foldMap f) m
104 foldMap f Node{node_value=Strict.Just x, node_descendants=TreeMap m} =
105 f x `mappend` foldMap (foldMap f) m
106 instance Ord k => Traversable (Node k) where
107 traverse f Node{node_value=Strict.Nothing, node_descendants=TreeMap m, node_size} =
108 Node node_size <$> pure Strict.Nothing <*> (TreeMap <$> traverse (traverse f) m)
109 traverse f Node{node_value=Strict.Just x, node_descendants=TreeMap m, node_size} =
110 Node node_size <$> (Strict.Just <$> f x) <*> (TreeMap <$> traverse (traverse f) m)
111 instance (Ord k, NFData k, NFData x) => NFData (Node k x) where
112 rnf (Node s v d) = rnf s `seq` rnf v `seq` rnf d
113
114 -- * Construct
115
116 -- | Return the empty 'TreeMap'.
117 empty :: TreeMap k x
118 empty = TreeMap Data.Map.empty
119
120 -- | Return a 'TreeMap' only mapping the given 'Path' to the given value.
121 singleton :: Ord k => Path k -> x -> TreeMap k x
122 singleton ks x = insert const ks x empty
123
124 -- | Return a 'Node' only containing the given value.
125 leaf :: Ord k => x -> Node k x
126 leaf x =
127 Node
128 { node_value = Strict.Just x
129 , node_descendants = empty
130 , node_size = 1
131 }
132
133 -- | Return the given 'TreeMap' associating the given 'Path' with the given value,
134 -- merging values if the given 'TreeMap' already associates the given 'Path'
135 -- with a non-'Strict.Nothing' 'node_value'.
136 insert :: Ord k => (x -> x -> x) -> Path k -> x -> TreeMap k x -> TreeMap k x
137 insert merge (k:|[]) x (TreeMap m) =
138 TreeMap $
139 Data.Map.insertWith
140 (\_ Node{node_value = x1, node_descendants = m1, node_size = s1} ->
141 Node
142 { node_value = Strict.maybe (Strict.Just x) (Strict.Just . merge x) x1
143 , node_descendants = m1
144 , node_size = Strict.maybe (s1 + 1) (const s1) x1
145 })
146 k (leaf x) m
147 insert merge (k:|k':ks) x (TreeMap m) =
148 TreeMap $
149 Data.Map.insertWith
150 (\_ Node{node_value = x1, node_descendants = m1} ->
151 let m' = insert merge (path k' ks) x $ m1 in
152 let s' = size m' + Strict.maybe 0 (const 1) x1 in
153 Node{node_value=x1, node_descendants=m', node_size=s'})
154 k
155 (Node
156 { node_value = Strict.Nothing
157 , node_descendants = insert merge (path k' ks) x empty
158 , node_size = 1
159 })
160 m
161
162 -- | Return a 'TreeMap' associating for each tuple of the given list
163 -- the 'Path' to the value,
164 -- merging values of identical 'Path's (in respective order).
165 from_List :: Ord k => (x -> x -> x) -> [(Path k, x)] -> TreeMap k x
166 from_List merge = Data.List.foldl (\acc (p, x) -> insert merge p x acc) empty
167
168 -- | Return a 'TreeMap' associating for each key and value of the given 'Map'
169 -- the 'Path' to the value,
170 -- merging values of identical 'Path's (in respective order).
171 from_Map :: Ord k => (x -> x -> x) -> Map (Path k) x -> TreeMap k x
172 from_Map merge = Data.Map.foldlWithKey (\acc p x -> insert merge p x acc) empty
173
174 -- * Size
175
176 -- | Return the 'Map' in the given 'TreeMap'.
177 nodes :: TreeMap k x -> Map k (Node k x)
178 nodes (TreeMap m) = m
179
180 -- | Return 'True' iif. the given 'TreeMap' is 'empty'.
181 null :: TreeMap k x -> Bool
182 null (TreeMap m) = Data.Map.null m
183
184 -- | Return the number of non-'Strict.Nothing' 'node_value's in the given 'TreeMap'.
185 --
186 -- * Complexity: O(r) where r is the size of the root 'Map'.
187 size :: Ord k => TreeMap k x -> Int
188 size = Data.Map.foldr ((+) . node_size) 0 . nodes
189
190 -- * Find
191
192 -- | Return the value (if any) associated with the given 'Path'.
193 find :: Ord k => Path k -> TreeMap k x -> Strict.Maybe x
194 find (k:|[]) (TreeMap m) = maybe Strict.Nothing node_value $ Data.Map.lookup k m
195 find (k:|k':ks) (TreeMap m) =
196 maybe Strict.Nothing (find (path k' ks) . node_descendants) $
197 Data.Map.lookup k m
198
199 -- | Return the values (if any) associated with the prefixes of the given 'Path' (included).
200 find_along :: Ord k => Path k -> TreeMap k x -> [x]
201 find_along p (TreeMap tm) =
202 go (list p) tm
203 where
204 go :: Ord k => [k] -> Map k (Node k x) -> [x]
205 go [] _m = []
206 go (k:ks) m =
207 case Data.Map.lookup k m of
208 Nothing -> []
209 Just node ->
210 Strict.maybe id (:) (node_value node) $
211 go ks $ nodes (node_descendants node)
212
213 -- * Union
214
215 -- | Return a 'TreeMap' associating the same 'Path's as both given 'TreeMap's,
216 -- merging values (in respective order) when a 'Path' leads
217 -- to a non-'Strict.Nothing' 'node_value' in both given 'TreeMap's.
218 union :: Ord k => (x -> x -> x) -> TreeMap k x -> TreeMap k x -> TreeMap k x
219 union merge (TreeMap tm0) (TreeMap tm1) =
220 TreeMap $
221 Data.Map.unionWith
222 (\Node{node_value=x0, node_descendants=m0}
223 Node{node_value=x1, node_descendants=m1} ->
224 let m = union merge m0 m1 in
225 let x = Strict.maybe x1 (\x0' -> Strict.maybe (Strict.Just x0') (Strict.Just . merge x0') x1) x0 in
226 Node
227 { node_value = x
228 , node_descendants = m
229 , node_size = size m + Strict.maybe 0 (const 1) x
230 })
231 tm0 tm1
232
233 -- | Return the 'union' of the given 'TreeMap's.
234 --
235 -- NOTE: use 'Data.List.foldl'' to reduce demand on the control-stack.
236 unions :: Ord k => (x -> x -> x) -> [TreeMap k x] -> TreeMap k x
237 unions merge = Data.List.foldl' (union merge) empty
238
239 -- foldl' :: (a -> b -> a) -> a -> [b] -> a
240 -- foldl' f = go
241 -- where
242 -- go z [] = z
243 -- go z (x:xs) = z `seq` go (f z x) xs
244
245 -- * Map
246
247 -- | Return the given 'TreeMap' with each non-'Strict.Nothing' 'node_value'
248 -- mapped by the given function.
249 map :: Ord k => (x -> y) -> TreeMap k x -> TreeMap k y
250 map f =
251 TreeMap .
252 Data.Map.map
253 (\n@Node{node_value=x, node_descendants=m} ->
254 n{ node_value=Strict.maybe Strict.Nothing (Strict.Just . f) x
255 , node_descendants=Hcompta.Lib.TreeMap.map f m
256 }) .
257 nodes
258
259 -- | Return the given 'TreeMap' with each 'node_value'
260 -- mapped by the given function supplied with
261 -- the already mapped 'node_descendants' of the current 'Node'.
262 map_by_depth_first :: Ord k => (TreeMap k y -> Strict.Maybe x -> y) -> TreeMap k x -> TreeMap k y
263 map_by_depth_first f =
264 TreeMap .
265 Data.Map.map
266 (\Node{node_value, node_descendants} ->
267 let m = map_by_depth_first f node_descendants in
268 Node
269 { node_value = Strict.Just $ f m node_value
270 , node_descendants = m
271 , node_size = size m + 1
272 }) .
273 nodes
274
275 -- * Alter
276
277 alterl_path :: Ord k => (Strict.Maybe x -> Strict.Maybe x) -> Path k -> TreeMap k x -> TreeMap k x
278 alterl_path fct =
279 go fct . list
280 where
281 go :: Ord k
282 => (Strict.Maybe x -> Strict.Maybe x) -> [k]
283 -> TreeMap k x -> TreeMap k x
284 go _f [] m = m
285 go f (k:p) (TreeMap m) =
286 TreeMap $
287 Data.Map.alter
288 (\c ->
289 let (cv, cm) =
290 case c of
291 Just Node{node_value=v, node_descendants=d} -> (v, d)
292 Nothing -> (Strict.Nothing, empty) in
293 let fx = f cv in
294 let gm = go f p cm in
295 case (fx, size gm) of
296 (Strict.Nothing, 0) -> Nothing
297 (_, s) -> Just
298 Node
299 { node_value = fx
300 , node_descendants = gm
301 , node_size = s + 1
302 }
303 ) k m
304
305 -- * Fold
306
307 -- | Return the given accumulator folded by the given function
308 -- applied on non-'Strict.Nothing' 'node_value's
309 -- from left to right through the given 'TreeMap'.
310 foldl_with_Path :: Ord k => (a -> Path k -> x -> a) -> a -> TreeMap k x -> a
311 foldl_with_Path =
312 foldp []
313 where
314 foldp :: Ord k
315 => [k] -> (a -> Path k -> x -> a)
316 -> a -> TreeMap k x -> a
317 foldp p fct a (TreeMap m) =
318 Data.Map.foldlWithKey
319 (\acc k Node{node_value, node_descendants} ->
320 let acc' = Strict.maybe acc (fct acc (reverse $ path k p)) node_value in
321 foldp (k:p) fct acc' node_descendants) a m
322
323 -- | Return the given accumulator folded by the given function
324 -- applied on non-'Strict.Nothing' 'Node's and 'node_value's
325 -- from left to right through the given 'TreeMap'.
326 foldl_with_Path_and_Node :: Ord k => (a -> Node k x -> Path k -> x -> a) -> a -> TreeMap k x -> a
327 foldl_with_Path_and_Node =
328 foldp []
329 where
330 foldp :: Ord k
331 => [k] -> (a -> Node k x -> Path k -> x -> a)
332 -> a -> TreeMap k x -> a
333 foldp p fct a (TreeMap m) =
334 Data.Map.foldlWithKey
335 (\acc k n@Node{node_value, node_descendants} ->
336 let acc' = Strict.maybe acc (fct acc n (reverse $ path k p)) node_value in
337 foldp (k:p) fct acc' node_descendants) a m
338
339 -- | Return the given accumulator folded by the given function
340 -- applied on non-'Strict.Nothing' 'node_value's
341 -- from right to left through the given 'TreeMap'.
342 foldr_with_Path :: Ord k => (Path k -> x -> a -> a) -> a -> TreeMap k x -> a
343 foldr_with_Path =
344 foldp []
345 where
346 foldp :: Ord k
347 => [k] -> (Path k -> x -> a -> a)
348 -> a -> TreeMap k x -> a
349 foldp p fct a (TreeMap m) =
350 Data.Map.foldrWithKey
351 (\k Node{node_value, node_descendants} acc ->
352 let acc' = foldp (k:p) fct acc node_descendants in
353 Strict.maybe acc' (\x -> fct (reverse $ path k p) x acc') node_value) a m
354
355 -- | Return the given accumulator folded by the given function
356 -- applied on non-'Strict.Nothing' 'Node's and 'node_value's
357 -- from right to left through the given 'TreeMap'.
358 foldr_with_Path_and_Node :: Ord k => (Node k x -> Path k -> x -> a -> a) -> a -> TreeMap k x -> a
359 foldr_with_Path_and_Node =
360 foldp []
361 where
362 foldp :: Ord k
363 => [k] -> (Node k x -> Path k -> x -> a -> a)
364 -> a -> TreeMap k x -> a
365 foldp p fct a (TreeMap m) =
366 Data.Map.foldrWithKey
367 (\k n@Node{node_value, node_descendants} acc ->
368 let acc' = foldp (k:p) fct acc node_descendants in
369 Strict.maybe acc' (\x -> fct n (reverse $ path k p) x acc') node_value) a m
370
371 -- | Return the given accumulator folded by the given function
372 -- applied on non-'Strict.Nothing' 'node_value's
373 -- from left to right along the given 'Path'.
374 foldl_path :: Ord k => (Path k -> x -> a -> a) -> Path k -> TreeMap k x -> a -> a
375 foldl_path fct =
376 go fct [] . list
377 where
378 go :: Ord k
379 => (Path k -> x -> a -> a) -> [k] -> [k]
380 -> TreeMap k x -> a -> a
381 go _f _ [] _t a = a
382 go f p (k:n) (TreeMap t) a =
383 case Data.Map.lookup k t of
384 Nothing -> a
385 Just Node{node_value=v, node_descendants=d} ->
386 case v of
387 Strict.Nothing -> go f (k:p) n d a
388 Strict.Just x -> go f (k:p) n d (f (reverse $ path k p) x a)
389
390 -- | Return the given accumulator folded by the given function
391 -- applied on non-'Strict.Nothing' 'node_value's
392 -- from right to left along the given 'Path'.
393 foldr_path :: Ord k => (Path k -> x -> a -> a) -> Path k -> TreeMap k x -> a -> a
394 foldr_path fct =
395 go fct [] . list
396 where
397 go :: Ord k
398 => (Path k -> x -> a -> a) -> [k] -> [k]
399 -> TreeMap k x -> a -> a
400 go _f _ [] _t a = a
401 go f p (k:n) (TreeMap t) a =
402 case Data.Map.lookup k t of
403 Nothing -> a
404 Just Node{node_value=v, node_descendants=d} ->
405 case v of
406 Strict.Nothing -> go f (k:p) n d a
407 Strict.Just x -> f (reverse $ path k p) x $ go f (k:p) n d a
408
409 -- * Flatten
410
411 -- | Return a 'Map' associating each 'Path'
412 -- leading to a non-'Strict.Nothing' 'node_value' in the given 'TreeMap',
413 -- with its value mapped by the given function.
414 flatten :: Ord k => (x -> y) -> TreeMap k x -> Map (Path k) y
415 flatten = flatten_with_Path . const
416
417 -- | Like 'flatten' but with also the current 'Path' given to the mapping function.
418 flatten_with_Path :: Ord k => (Path k -> x -> y) -> TreeMap k x -> Map (Path k) y
419 flatten_with_Path =
420 flat_map []
421 where
422 flat_map :: Ord k
423 => [k] -> (Path k -> x -> y)
424 -> TreeMap k x
425 -> Map (Path k) y
426 flat_map p f (TreeMap m) =
427 Data.Map.unions $
428 (
429 Data.Map.mapKeysMonotonic (reverse . flip path p) $
430 Data.Map.mapMaybeWithKey (\k Node{node_value} ->
431 case node_value of
432 Strict.Nothing -> Nothing
433 Strict.Just x -> Just $ f (reverse $ path k p) x) m
434 ) :
435 Data.Map.foldrWithKey
436 (\k -> (:) . flat_map (k:p) f . node_descendants)
437 [] m
438
439 -- * Filter
440
441 -- | Return the given 'TreeMap'
442 -- keeping only its non-'Strict.Nothing' 'node_value's
443 -- passing the given predicate.
444 filter :: Ord k => (x -> Bool) -> TreeMap k x -> TreeMap k x
445 filter f =
446 map_Maybe_with_Path
447 (\_p x -> if f x then Strict.Just x else Strict.Nothing)
448
449 -- | Like 'filter' but with also the current 'Path' given to the predicate.
450 filter_with_Path :: Ord k => (Path k -> x -> Bool) -> TreeMap k x -> TreeMap k x
451 filter_with_Path f =
452 map_Maybe_with_Path
453 (\p x -> if f p x then Strict.Just x else Strict.Nothing)
454
455 -- | Like 'filter_with_Path' but with also the current 'Node' given to the predicate.
456 filter_with_Path_and_Node :: Ord k => (Node k x -> Path k -> x -> Bool) -> TreeMap k x -> TreeMap k x
457 filter_with_Path_and_Node f =
458 map_Maybe_with_Path_and_Node
459 (\n p x -> if f n p x then Strict.Just x else Strict.Nothing)
460
461 -- | Return the given 'TreeMap'
462 -- mapping its non-'Strict.Nothing' 'node_value's
463 -- and keeping only the non-'Strict.Nothing' results.
464 map_Maybe :: Ord k => (x -> Strict.Maybe y) -> TreeMap k x -> TreeMap k y
465 map_Maybe = map_Maybe_with_Path . const
466
467 -- | Like 'map_Maybe' but with also the current 'Path' given to the predicate.
468 map_Maybe_with_Path :: Ord k => (Path k -> x -> Strict.Maybe y) -> TreeMap k x -> TreeMap k y
469 map_Maybe_with_Path = map_Maybe_with_Path_and_Node . const
470
471 -- | Like 'map_Maybe_with_Path' but with also the current 'Node' given to the predicate.
472 map_Maybe_with_Path_and_Node :: Ord k => (Node k x -> Path k -> x -> Strict.Maybe y) -> TreeMap k x -> TreeMap k y
473 map_Maybe_with_Path_and_Node =
474 go []
475 where
476 go :: Ord k
477 => [k] -> (Node k x -> Path k -> x -> Strict.Maybe y)
478 -> TreeMap k x
479 -> TreeMap k y
480 go p test (TreeMap m) =
481 TreeMap $
482 Data.Map.mapMaybeWithKey
483 (\k node@Node{node_value=v, node_descendants=ns} ->
484 let node_descendants = go (k:p) test ns in
485 let node_size = size node_descendants in
486 case v of
487 Strict.Just x ->
488 let node_value = test node (reverse $ path k p) x in
489 case node_value of
490 Strict.Nothing | null node_descendants -> Nothing
491 Strict.Nothing -> Just Node{node_value, node_descendants, node_size=1 + node_size}
492 Strict.Just _ -> Just Node{node_value, node_descendants, node_size}
493 _ ->
494 if null node_descendants
495 then Nothing
496 else Just Node{node_value=Strict.Nothing, node_descendants, node_size}
497 ) m