]> Git — Sourcephile - comptalang.git/blob - cli/Hcompta/Expr/Bool.hs
Sync with symantic.
[comptalang.git] / cli / Hcompta / Expr / Bool.hs
1 {-# LANGUAGE FlexibleContexts #-}
2 {-# LANGUAGE FlexibleInstances #-}
3 {-# LANGUAGE GADTs #-}
4 -- {-# LANGUAGE KindSignatures #-}
5 {-# LANGUAGE MultiParamTypeClasses #-}
6 {-# LANGUAGE NoImplicitPrelude #-}
7 {-# LANGUAGE OverloadedStrings #-}
8 {-# LANGUAGE Rank2Types #-}
9 {-# LANGUAGE ScopedTypeVariables #-}
10 {-# OPTIONS_GHC -fno-warn-tabs #-}
11 {-# OPTIONS_GHC -fno-warn-orphans #-}
12
13 module Hcompta.Expr.Bool where
14
15 import Data.Bool
16 -- import Data.Either (Either(..))
17 -- import Data.Function (($), (.))
18 -- import Data.Maybe (Maybe(..))
19 -- import Data.Monoid ((<>))
20 -- import Data.Proxy (Proxy(..))
21 -- import Data.String (String)
22 -- import Data.Type.Equality ((:~:)(Refl))
23 -- import Text.Show (Show(..))
24
25 import Hcompta.Expr.Dup
26 -- import Hcompta.Expr.Fun
27 -- import Hcompta.Expr.Lit
28
29 -- * Class 'Expr_Bool'
30
31 -- | /Tagless-final symantics/ for usual logical boolean operators.
32 class Expr_Bool repr where
33 neg :: repr Bool -> repr Bool
34 and :: repr Bool -> repr Bool -> repr Bool
35 or :: repr Bool -> repr Bool -> repr Bool
36 xor :: repr Bool -> repr Bool -> repr Bool
37 xor x y = (x `or` y) `and` neg (x `and` y)
38
39 instance -- Expr_Bool Dup
40 ( Expr_Bool r1
41 , Expr_Bool r2
42 ) => Expr_Bool (Dup r1 r2) where
43 neg (x1 `Dup` x2) = neg x1 `Dup` neg x2
44 and (x1 `Dup` x2) (y1 `Dup` y2) = and x1 y1 `Dup` and x2 y2
45 or (x1 `Dup` x2) (y1 `Dup` y2) = or x1 y1 `Dup` or x2 y2
46
47 {-
48 instance -- Expr_from Tree
49 ( Expr_Bool repr
50 , Type_from Tree next
51 , Expr_from Tree repr next (Type_Lit Bool repr next)
52 ) => Expr_from Tree repr (Type_Lit Bool repr next)
53 (Type_Fun_Lit Bool repr next) where
54 expr_from _pty pvar ctx (Raw "And" [raw_x, raw_y]) k =
55 expr_from pvar pvar ctx raw_x $ \ty_x (x::Repr_HO repr _ctx _h_x) ->
56 expr_from pvar pvar ctx raw_y $ \ty_y (y::Repr_HO repr _ctx _h_y) ->
57 case (ty_x, ty_y) of
58 ( Type_Fun_Next Type_Int
59 , Type_Fun_Next Type_Int ) ->
60 k (Type_Fun_Next Type_Int) $ \c -> and (x c) (y c)
61 _ -> Left "Error: And: at least one operand is not an Int"
62 expr_from _pty pvar ctx raw k =
63 expr_from (Proxy::Proxy next) pvar ctx raw k
64 -}
65
66 {-
67 -- * Type 'Type_Bool'
68
69 -- | GADT for boolean type:
70 --
71 -- * singleton (bijective mapping between Haskell type @h@ and the GADT's terms),
72 -- * and extensible (through @next@).
73 data Type_Bool (next:: * -> *) h where
74 Type_Bool :: Type_Bool next Bool
75 Type_Bool_Next :: next h -> Type_Bool next h
76 type Type_Fun_Lit_Bool repr next = Type_Fun repr (Type_Bool next)
77 type Type_Fun_Lit_Bool_End repr = Type_Fun_Lit_Bool repr Type_Bool_End
78
79 instance -- Type_Eq
80 Type_Eq next =>
81 Type_Eq (Type_Bool next) where
82 type_eq Type_Bool
83 Type_Bool = Just Refl
84 type_eq (Type_Bool_Next x)
85 (Type_Bool_Next y) = x `type_eq` y
86 type_eq _ _ = Nothing
87 instance -- Type_from Tree
88 Type_from Tree next =>
89 Type_from Tree (Type_Bool next) where
90 type_from (Tree "Bool" []) k = k Type_Bool
91 type_from raw k = type_from raw $ k . Type_Bool_Next
92 instance -- From_Type String
93 From_Type String next =>
94 From_Type String (Type_Bool next) where
95 from_type Type_Bool = "Bool"
96 from_type (Type_Bool_Next t) = from_type t
97 --instance -- Show
98 -- From_Type String next =>
99 -- Show (Type_Bool next h) where
100 -- show = from_type
101
102 -- ** Type 'Type_Bool_End'
103
104 data Type_Bool_End h where
105 Type_Bool_End :: Type_Bool_End ()
106
107 instance -- Type_Eq
108 Type_Eq Type_Bool_End where
109 type_eq Type_Bool_End
110 Type_Bool_End = Just Refl
111 instance -- Type_from Tree
112 Type_from Tree Type_Bool_End where
113 type_from _ k = k Type_Bool_End
114 instance -- Expr_from Tree
115 Show raw =>
116 Expr_from raw repr Type_Bool_End (Type_Fun_Lit_Bool repr Type_Bool_End) where
117 expr_from _pty _pvar _ctx raw _k =
118 Left $ "Error: invalid: " <> show raw
119
120
121 fun_lit_bool_from
122 :: forall next raw repr ret.
123 ( Expr_from raw repr (Type_Fun_Lit_Bool repr next) (Type_Fun_Lit_Bool repr next)
124 -- , Expr_from raw repr next (Type_Fun_Lit_Bool repr next)
125 , Expr_Fun repr
126 , Expr_Lit repr
127 , Type_from raw next
128 )
129 => Proxy next
130 -> raw
131 -> (forall h. Type_Fun_Lit_Bool repr next h -> repr h -> Either Error_Type ret)
132 -> Either Error_Type ret
133 fun_lit_bool_from _pty raw k =
134 expr_from
135 (Proxy::Proxy (Type_Fun_Lit_Bool repr next))
136 (Proxy::Proxy (Type_Fun_Lit_Bool repr next))
137 Context_Type_Empty raw $ \ty repr ->
138 k ty $ repr Context_Type_Empty
139 -}