2 Module : Gargantext.Graph.Distances.Matrix
4 Copyright : (c) CNRS, 2017-Present
5 License : AGPL + CECILL v3
6 Maintainer : team@gargantext.org
7 Stability : experimental
10 This module aims at implementig distances of terms context by context is
11 the same referential of corpus.
14 Implementation use Accelerate library which enables GPU and CPU computation:
16 * Manuel M. T. Chakravarty, Gabriele Keller, Sean Lee, Trevor L. McDonell, and Vinod Grover.
17 [Accelerating Haskell Array Codes with Multicore GPUs][CKLM+11].
18 In _DAMP '11: Declarative Aspects of Multicore Programming_, ACM, 2011.
20 * Trevor L. McDonell, Manuel M. T. Chakravarty, Gabriele Keller, and Ben Lippmeier.
21 [Optimising Purely Functional GPU Programs][MCKL13].
22 In _ICFP '13: The 18th ACM SIGPLAN International Conference on Functional Programming_, ACM, 2013.
24 * Robert Clifton-Everest, Trevor L. McDonell, Manuel M. T. Chakravarty, and Gabriele Keller.
25 [Embedding Foreign Code][CMCK14].
26 In _PADL '14: The 16th International Symposium on Practical Aspects of Declarative Languages_, Springer-Verlag, LNCS, 2014.
28 * Trevor L. McDonell, Manuel M. T. Chakravarty, Vinod Grover, and Ryan R. Newton.
29 [Type-safe Runtime Code Generation: Accelerate to LLVM][MCGN15].
30 In _Haskell '15: The 8th ACM SIGPLAN Symposium on Haskell_, ACM, 2015.
34 {-# LANGUAGE NoImplicitPrelude #-}
35 {-# LANGUAGE FlexibleContexts #-}
36 {-# LANGUAGE TypeFamilies #-}
37 {-# LANGUAGE TypeOperators #-}
38 {-# LANGUAGE ScopedTypeVariables #-}
40 module Gargantext.Viz.Graph.Distances.Matrice
43 import Data.Array.Accelerate
44 import Data.Array.Accelerate.Interpreter (run)
46 import qualified Gargantext.Prelude as P
49 -----------------------------------------------------------------------
53 -- Vector (Z :. 3) [0,1,2]
54 vector :: Int -> (Array (Z :. Int) Int)
55 vector n = fromList (Z :. n) [0..n]
59 -- >>> matrix 3 ([1..] :: [Double])
60 -- Matrix (Z :. 3 :. 3)
64 matrix :: Elt c => Int -> [c] -> Matrix c
65 matrix n l = fromList (Z :. n :. n) l
67 -- | Two ways to get the rank (as documentation)
69 -- >>> rank (matrix 3 ([1..] :: [Int]))
71 rank :: (Matrix a) -> Int
72 rank m = arrayRank $ arrayShape m
74 -----------------------------------------------------------------------
75 -- | Dimension of a square Matrix
76 -- How to force use with SquareMatrix ?
79 -- | Get Dimension of a square Matrix
81 -- >>> dim (matrix 3 ([1..] :: [Int]))
83 dim :: Matrix a -> Dim
86 Z :. _ :. n = arrayShape m
87 -- indexTail (arrayShape m)
89 -----------------------------------------------------------------------
91 -- | Sum of a Matrix by Column
93 -- >>> run $ matSum 3 (use $ matrix 3 [1..])
94 -- Matrix (Z :. 3 :. 3)
95 -- [ 12.0, 15.0, 18.0,
98 matSum :: Dim -> Acc (Matrix Double) -> Acc (Matrix Double)
99 matSum r mat = replicate (constant (Z :. (r :: Int) :. All)) $ sum $ transpose mat
102 -- | Proba computes de probability matrix: all cells divided by thee sum of its column
103 -- if you need get the probability on the lines, just transpose it
105 -- >>> run $ matProba 3 (use $ matrix 3 [1..])
106 -- Matrix (Z :. 3 :. 3)
107 -- [ 8.333333333333333e-2, 0.13333333333333333, 0.16666666666666666,
108 -- 0.3333333333333333, 0.3333333333333333, 0.3333333333333333,
109 -- 0.5833333333333334, 0.5333333333333333, 0.5]
110 matProba :: Dim -> Acc (Matrix Double) -> Acc (Matrix Double)
111 matProba r mat = zipWith (/) mat (matSum r mat)
113 -- | Diagonal of the matrix
115 -- >>> run $ diag (use $ matrix 3 ([1..] :: [Int]))
116 -- Vector (Z :. 3) [1,5,9]
117 diag :: Elt e => Acc (Matrix e) -> Acc (Vector e)
118 diag m = backpermute (indexTail (shape m)) (lift1 (\(Z :. x) -> (Z :. x :. (x :: Exp Int)))) m
121 -- | Divide by the Diagonal of the matrix
123 -- >>> run $ divByDiag 3 (use $ matrix 3 ([1..] :: [Double]))
124 -- Matrix (Z :. 3 :. 3)
125 -- [ 1.0, 0.4, 0.3333333333333333,
126 -- 4.0, 1.0, 0.6666666666666666,
128 divByDiag :: Dim -> Acc (Matrix Double) -> Acc (Matrix Double)
129 divByDiag d mat = zipWith (/) mat (replicate (constant (Z :. (d :: Int) :. All)) $ diag mat)
131 -----------------------------------------------------------------------
132 -- | Filters the matrix with the minimum of maximums
134 -- >>> run $ matMiniMax $ use $ matrix 3 [1..]
135 -- Matrix (Z :. 3 :. 3)
139 matMiniMax :: Acc (Matrix Double) -> Acc (Matrix Double)
140 matMiniMax m = map (\x -> ifThenElse (x > miniMax') x 0) (transpose m)
142 miniMax' = (the $ minimum $ maximum m)
144 -- | Filters the matrix with a constant
146 -- >>> run $ matFilter 5 $ use $ matrix 3 [1..]
147 -- Matrix (Z :. 3 :. 3)
151 matFilter :: Double -> Acc (Matrix Double) -> Acc (Matrix Double)
152 matFilter t m = map (\x -> ifThenElse (x > (constant t)) x 0) (transpose m)
154 -----------------------------------------------------------------------
155 -- * Measures of proximity
156 -----------------------------------------------------------------------
157 -- ** Conditional distance
159 -- *** Conditional distance (basic)
161 -- | Conditional distance (basic version)
163 -- 2 main measures are actually implemented in order to compute the
164 -- proximity of two terms: conditional and distributional
166 -- Conditional measure is an absolute measure which reflects
167 -- interactions of 2 terms in the corpus.
168 measureConditional :: Matrix Int -> Matrix Double
169 --measureConditional m = run (matMiniMax $ matProba (dim m) $ map fromIntegral $ use m)
170 measureConditional m = run (matProba (dim m) $ map fromIntegral $ use m)
173 -- *** Conditional distance (advanced)
175 -- | Conditional distance (advanced version)
177 -- The conditional measure P(i|j) of 2 terms @i@ and @j@, also called
178 -- "confidence" , is the maximum probability between @i@ and @j@ to see
179 -- @i@ in the same context of @j@ knowing @j@.
181 -- If N(i) (resp. N(j)) is the number of occurrences of @i@ (resp. @j@)
182 -- in the corpus and _[n_{ij}\] the number of its occurrences we get:
184 -- \[P_c=max(\frac{n_i}{n_{ij}},\frac{n_j}{n_{ij}} )\]
185 conditional' :: Matrix Int -> (Matrix InclusionExclusion, Matrix SpecificityGenericity)
186 conditional' m = (run $ ie $ map fromIntegral $ use m, run $ sg $ map fromIntegral $ use m)
188 ie :: Acc (Matrix Double) -> Acc (Matrix Double)
189 ie mat = map (\x -> x / (2*n-1)) $ zipWith (+) (xs mat) (ys mat)
190 sg :: Acc (Matrix Double) -> Acc (Matrix Double)
191 sg mat = map (\x -> x / (2*n-1)) $ zipWith (-) (xs mat) (ys mat)
199 xs :: Acc (Matrix Double) -> Acc (Matrix Double)
200 xs mat = zipWith (-) (matSum r $ matProba r mat) (matProba r mat)
201 ys :: Acc (Matrix Double) -> Acc (Matrix Double)
202 ys mat = zipWith (-) (matSum r $ transpose $ matProba r mat) (matProba r mat)
204 -----------------------------------------------------------------------
205 -- ** Distributional Distance
207 -- | Distributional Distance Measure
209 -- Distributional measure is a relative measure which depends on the
210 -- selected list, it represents structural equivalence.
212 -- The distributional measure \[P_c\] of @i@ and @j@ terms is: \[
213 -- S_{MI} = \frac {\sum_{k \neq i,j ; MI_{ik} >0}^{} \min(MI_{ik},
214 -- MI_{jk})}{\sum_{k \neq i,j ; MI_{ik}}^{}} \]
216 -- Mutual information
217 -- \[S{MI}({i},{j}) = \log(\frac{C{ij}}{E{ij}})\]
219 -- Number of cooccurrences of @i@ and @j@ in the same context of text
222 -- The expected value of the cooccurrences
223 -- \[E_{ij} = \frac {S_{i} S_{j}} {N}\]
225 -- Total cooccurrences of @i@ term
226 -- \[N_{i} = \sum_{i}^{} S_{i}\]
227 distributional :: Matrix Int -> Matrix Double
228 distributional m = run $ matMiniMax $ ri (map fromIntegral $ use m)
231 -- filter m = zipWith (\a b -> max a b) m (transpose m)
233 ri mat = zipWith (/) mat1 mat2
235 mat1 = matSum n $ zipWith min (mi mat) (mi $ transpose mat)
238 mi m' = zipWith (\a b -> max (log $ a/b) 0) m'
239 $ zipWith (/) (crossProduct m') (total m')
241 total m'' = replicate (constant (Z :. n :. n)) $ fold (+) 0 $ fold (+) 0 m''
244 crossProduct m''' = zipWith (*) (cross m''' ) (cross (transpose m'''))
245 cross mat = zipWith (-) (matSum n mat) (mat)
247 -----------------------------------------------------------------------
248 -----------------------------------------------------------------------
249 -- * Specificity and Genericity
251 {- | Metric Specificity and genericity: select terms
253 - let N termes and occurrences of i \[N{i}\]
255 - Cooccurrences of i and j \[N{ij}\]
256 - Probability to get i given j : \[P(i|j)=N{ij}/N{j}\]
258 - Genericity of i \[Gen(i) = \frac{\sum_{j \neq i,j} P(i|j)}{N-1}\]
259 - Specificity of j \[Spec(i) = \frac{\sum_{j \neq i,j} P(j|i)}{N-1}\]
261 - \[Inclusion (i) = Gen(i) + Spec(i)\)
262 - \[GenericityScore = Gen(i)- Spec(i)\]
264 - References: Science mapping with asymmetrical paradigmatic proximity
265 Jean-Philippe Cointet (CREA, TSV), David Chavalarias (CREA) (Submitted
266 on 15 Mar 2008), Networks and Heterogeneous Media 3, 2 (2008) 267 - 276,
267 arXiv:0803.2315 [cs.OH]
269 type InclusionExclusion = Double
270 type SpecificityGenericity = Double
272 data SquareMatrix = SymetricMatrix | NonSymetricMatrix
273 type SymetricMatrix = Matrix
274 type NonSymetricMatrix = Matrix
277 incExcSpeGen :: Matrix Int -> (Vector InclusionExclusion, Vector SpecificityGenericity)
278 incExcSpeGen m = (run' inclusionExclusion m, run' specificityGenericity m)
280 run' fun mat = run $ fun $ map fromIntegral $ use mat
282 -- | Inclusion (i) = Gen(i)+Spec(i)
283 inclusionExclusion :: Acc (Matrix Double) -> Acc (Vector Double)
284 inclusionExclusion mat = zipWith (+) (pV mat) (pH mat)
286 -- | Genericity score = Gen(i)- Spec(i)
287 specificityGenericity :: Acc (Matrix Double) -> Acc (Vector Double)
288 specificityGenericity mat = zipWith (-) (pV mat) (pH mat)
290 -- | Gen(i) : 1/(N-1)*Sum(j!=i, P(i|j)) : Genericity of i
291 pV :: Acc (Matrix Double) -> Acc (Vector Double)
292 pV mat = map (\x -> (x-1)/(cardN-1)) $ sum $ p_ij mat
294 -- | Spec(i) : 1/(N-1)*Sum(j!=i, P(j|i)) : Specificity of j
295 pH :: Acc (Matrix Double) -> Acc (Vector Double)
296 pH mat = map (\x -> (x-1)/(cardN-1)) $ sum $ p_ji mat
299 cardN = constant (P.fromIntegral (dim m) :: Double)
302 -- | P(i|j) = Nij /N(jj) Probability to get i given j
303 --p_ij :: (Elt e, P.Fractional (Exp e)) => Acc (SymetricMatrix e) -> Acc (Matrix e)
304 p_ij :: (Elt e, P.Fractional (Exp e)) => Acc (Matrix e) -> Acc (Matrix e)
305 p_ij m = zipWith (/) m (n_jj m)
307 n_jj :: Elt e => Acc (SymetricMatrix e) -> Acc (Matrix e)
308 n_jj myMat' = backpermute (shape m)
309 (lift1 ( \(Z :. (_ :: Exp Int) :. (j:: Exp Int))
314 -- | P(j|i) = Nij /N(ii) Probability to get i given j
316 p_ji :: (Elt e, P.Fractional (Exp e)) => Acc (Array DIM2 e) -> Acc (Array DIM2 e)
317 p_ji = transpose . p_ij
320 -- | Step to ckeck the result in visual/qualitative tests
321 incExcSpeGen_proba :: Matrix Int -> Matrix Double
322 incExcSpeGen_proba m = run' pro m
324 run' fun mat = run $ fun $ map fromIntegral $ use mat
329 -- | Hypothesis to test maybe later (or not)
330 -- TODO ask accelerate for instances to ease such writtings:
331 p_ :: (Elt e, P.Fractional (Exp e)) => Acc (Array DIM2 e) -> Acc (Array DIM2 e)
332 p_ m = zipWith (/) m (n_ m)
334 n_ :: Elt e => Acc (SymetricMatrix e) -> Acc (Matrix e)
335 n_ m = backpermute (shape m)
336 (lift1 ( \(Z :. (i :: Exp Int) :. (j:: Exp Int))
337 -> (ifThenElse (i < j) (lift (Z :. j :. j)) (lift (Z :. i :. i)) :: Exp DIM2)
342 -- * For Tests (to be removed)
343 -- | Test perfermance with this matrix
344 -- TODO : add this in a benchmark folder
345 distriTest :: Matrix Double
346 distriTest = distributional $ matrix 100 [1..]
347 -----------------------------------------------------------------------