]> Git — Sourcephile - haskell/symantic.git/blob - Language/Symantic/Type/Type0.hs
Monad
[haskell/symantic.git] / Language / Symantic / Type / Type0.hs
1 {-# LANGUAGE ConstraintKinds #-}
2 {-# LANGUAGE FlexibleContexts #-}
3 {-# LANGUAGE FlexibleInstances #-}
4 {-# LANGUAGE GADTs #-}
5 {-# LANGUAGE MultiParamTypeClasses #-}
6 {-# LANGUAGE Rank2Types #-}
7 {-# LANGUAGE ScopedTypeVariables #-}
8 {-# LANGUAGE TypeFamilies #-}
9 {-# LANGUAGE TypeOperators #-}
10 {-# LANGUAGE UndecidableInstances #-}
11 {-# OPTIONS_GHC -fno-warn-orphans #-}
12 module Language.Symantic.Type.Type0 where
13
14 import Data.Maybe (isJust)
15 import Data.Proxy
16 import Data.Type.Equality ((:~:)(Refl))
17 import GHC.Prim (Constraint)
18
19 import Language.Symantic.Lib.Data.Peano
20 import Language.Symantic.Type.Root
21 import Language.Symantic.Type.Alt
22 import Language.Symantic.Type.Error
23
24 -- * Type 'Dict'
25 -- | 'Dict' captures the dictionary of a 'Constraint':
26 -- pattern matching on the 'Dict' constructor
27 -- brings the 'Constraint' into scope.
28 data Dict :: Constraint -> * where
29 Dict :: c => Dict c
30
31 -- * Type 'No_Type'
32 -- | A discarded type.
33 data No_Type (root:: * -> *) h
34 = No_Type (root h)
35 deriving (Eq, Show)
36
37 -- * Class 'Eq_Type'
38 -- | Test two types for equality,
39 -- returning an Haskell type-level proof
40 -- of the equality when it holds.
41 class Eq_Type (ty:: * -> *) where
42 eq_type :: forall h1 h2. ty h1 -> ty h2 -> Maybe (h1 :~: h2)
43 instance -- Type_Root
44 Eq_Type (ty (Type_Root ty)) =>
45 Eq_Type (Type_Root ty) where
46 eq_type (Type_Root x) (Type_Root y) = x `eq_type` y
47 instance -- Eq Type_Root
48 Eq_Type (Type_Root ty) =>
49 Eq (Type_Root ty h) where
50 x == y = isJust $ x `eq_type` y
51 instance -- Type_Alt
52 ( Eq_Type (curr root)
53 , Eq_Type (next root)
54 ) => Eq_Type (Type_Alt curr next root) where
55 eq_type (Type_Alt_Curr x) (Type_Alt_Curr y) = x `eq_type` y
56 eq_type (Type_Alt_Next x) (Type_Alt_Next y) = x `eq_type` y
57 eq_type _ _ = Nothing
58 instance -- Eq Type_Alt
59 ( Eq_Type (curr root)
60 , Eq_Type (next root)
61 ) => Eq (Type_Alt curr next root h) where
62 x == y = isJust $ x `eq_type` y
63
64 -- * Class 'Constraint_Type'
65 -- | Test if a type satisfies a given 'Constraint',
66 -- returning an Haskell type-level proof
67 -- of that satisfaction when it holds.
68 class Constraint_Type (c:: * -> Constraint) (ty:: * -> *) where
69 constraint_type :: forall h. Proxy c -> ty h -> Maybe (Dict (c h))
70 constraint_type _c _ = Nothing
71 instance -- Type_Root
72 Constraint_Type c (ty (Type_Root ty)) =>
73 Constraint_Type c (Type_Root ty) where
74 constraint_type c (Type_Root ty) = constraint_type c ty
75 instance -- Type_Alt
76 ( Constraint_Type c (curr root)
77 , Constraint_Type c (next root)
78 ) => Constraint_Type c (Type_Alt curr next root) where
79 constraint_type c (Type_Alt_Curr ty) = constraint_type c ty
80 constraint_type c (Type_Alt_Next ty) = constraint_type c ty
81
82 -- | Parsing utility to check that a type is an instance of a given 'Constraint',
83 -- or raise 'Error_Type_Constraint_missing'.
84 check_type_constraint
85 :: forall ast c root ty h ret.
86 ( root ~ Root_of_Type ty
87 , Lift_Error_Type (Error_Type ast) (Error_of_Type ast root)
88 , Constraint_Type c ty
89 )
90 => Proxy c -> ast -> ty h
91 -> (Dict (c h) -> Either (Error_of_Type ast root) ret)
92 -> Either (Error_of_Type ast root) ret
93 check_type_constraint c ast ty k =
94 case constraint_type c ty of
95 Just Dict -> k Dict
96 Nothing -> Left $ lift_error_type $
97 Error_Type_Constraint_missing ast -- (Exists_Type ty_k)
98
99 -- * Class 'Type_from'
100 -- | Parse given @ast@ into a 'Root_of_Type',
101 -- or return an 'Error_of_Type'.
102 --
103 -- NOTE: making a distinction between @ty@ and 'Root_of_Type'@ ty@,
104 -- instead of having only a @root@ variable
105 -- is what enables to define many instances, one per type.
106 class Type_from ast (ty:: * -> *) where
107 type_from
108 :: Proxy ty
109 -> ast
110 -> (forall h. Root_of_Type ty h
111 -> Either (Error_of_Type ast (Root_of_Type ty)) ret)
112 -> Either (Error_of_Type ast (Root_of_Type ty)) ret
113 instance -- Type_Root
114 ( Eq_Type (Type_Root ty)
115 , Type_from ast (ty (Type_Root ty))
116 , Root_of_Type (ty (Type_Root ty)) ~ Type_Root ty
117 ) => Type_from ast (Type_Root ty) where
118 type_from _ty = type_from (Proxy::Proxy (ty (Type_Root ty)))
119 instance -- Type_Alt
120 ( Eq_Type (curr root)
121 , Type_from ast (curr root)
122 , Type_from ast (next root)
123 , Root_of_Type (curr root) ~ root
124 , Root_of_Type (next root) ~ root
125 , Unlift_Error_Type (Error_Type ast) (Error_of_Type ast root)
126 ) => Type_from ast (Type_Alt curr next root) where
127 type_from _ty ast k =
128 case type_from (Proxy::Proxy (curr root)) ast (Right . k) of
129 Right ret -> ret
130 Left err ->
131 case unlift_error_type err of
132 Just (Error_Type_Unsupported_here (_::ast)) ->
133 type_from (Proxy::Proxy (next root)) ast k
134 _ -> Left err
135
136 -- * Class 'String_from_Type'
137 -- | Return a 'String' from a type.
138 class String_from_Type ty where
139 string_from_type :: ty h -> String
140 instance -- Type_Root
141 String_from_Type (ty (Type_Root ty)) =>
142 String_from_Type (Type_Root ty) where
143 string_from_type (Type_Root ty) = string_from_type ty
144 instance -- Show Type_Root
145 String_from_Type (Type_Root ty) =>
146 Show (Type_Root ty h) where
147 show = string_from_type
148 instance -- Type_Alt
149 ( String_from_Type (curr root)
150 , String_from_Type (next root)
151 ) => String_from_Type (Type_Alt curr next root) where
152 string_from_type (Type_Alt_Curr t) = string_from_type t
153 string_from_type (Type_Alt_Next t) = string_from_type t
154
155 -- * Type 'Type_Type0'
156 -- | A type of kind @*@.
157 data Type_Type0 px (root:: * -> *) h where
158 Type_Type0 :: px -> Type_Type0 px root (Host0_of px)
159
160 type instance Root_of_Type (Type_Type0 px root) = root
161 type instance Error_of_Type ast (Type_Type0 px root) = No_Error_Type
162
163 instance -- Eq_Type
164 Eq_Type (Type_Type0 (Proxy h0) root) where
165 eq_type Type_Type0{} Type_Type0{} = Just Refl
166 instance -- Eq_Type
167 Eq_Type (Type_Type0 EPeano root) where
168 eq_type (Type_Type0 p1)
169 (Type_Type0 p2)
170 | p1 == p2
171 = Just Refl
172 eq_type _ _ = Nothing
173 instance -- Eq
174 Eq_Type (Type_Type0 px root) =>
175 Eq (Type_Type0 px root h) where
176 x == y = isJust $ x `eq_type` y
177 instance -- Show
178 String_from_Type (Type_Type0 (Proxy h0) root) =>
179 Show (Type_Type0 (Proxy h0) root h0) where
180 show = string_from_type
181 instance Eq h0 => Constraint_Type Eq (Type_Type0 (Proxy h0) root) where
182 constraint_type _c Type_Type0{} = Just Dict
183 instance Ord h0 => Constraint_Type Ord (Type_Type0 (Proxy h0) root) where
184 constraint_type _c Type_Type0{} = Just Dict
185
186 -- | Convenient alias to include a 'Type_Type0' within a type.
187 type_type0 :: forall root h0. Lift_Type_Root (Type_Type0 (Proxy h0)) root => root h0
188 type_type0 = lift_type_root (Type_Type0 (Proxy::Proxy h0))
189
190 -- ** Type family 'Host0_of'
191 type family Host0_of px :: *
192 type instance Host0_of (Proxy h0) = h0
193
194 -- ** Type 'Lift_Type'
195 -- | Apply 'Peano_of_Type' on 'Lift_TypeP'.
196 type Lift_Type ty tys
197 = Lift_TypeP (Peano_of_Type ty tys) ty tys
198 instance
199 Lift_Type ty root =>
200 Lift_Type_Root ty (Type_Root root) where
201 lift_type_root = Type_Root . lift_type
202
203 -- *** Type 'Peano_of_Type'
204 -- | Return a 'Peano' number derived from the location
205 -- of a given type within a given type stack,
206 -- which is used to avoid @OverlappingInstances@.
207 type family Peano_of_Type
208 (ty:: (* -> *) -> * -> *)
209 (tys:: (* -> *) -> * -> *) :: * where
210 Peano_of_Type ty ty = Zero
211 Peano_of_Type ty (Type_Alt ty next) = Zero
212 Peano_of_Type other (Type_Alt curr next) = Succ (Peano_of_Type other next)
213
214 -- *** Class 'Lift_TypeP'
215 -- | Lift a given type to the top of a given type stack including it,
216 -- by constructing the appropriate sequence of 'Type_Alt_Curr' and 'Type_Alt_Next'.
217 class Lift_TypeP (p:: *) ty tys where
218 lift_typeP :: forall (root:: * -> *) h. Proxy p -> ty root h -> tys root h
219 instance Lift_TypeP Zero curr curr where
220 lift_typeP _ = id
221 instance Lift_TypeP Zero curr (Type_Alt curr next) where
222 lift_typeP _ = Type_Alt_Curr
223 instance
224 Lift_TypeP p other next =>
225 Lift_TypeP (Succ p) other (Type_Alt curr next) where
226 lift_typeP _ = Type_Alt_Next . lift_typeP (Proxy::Proxy p)
227
228 -- | Convenient wrapper around 'lift_typeP',
229 -- passing it the 'Peano' number from 'Peano_of_Type'.
230 lift_type
231 :: forall ty tys (root:: * -> *) h.
232 Lift_Type ty tys =>
233 ty root h -> tys root h
234 lift_type = lift_typeP (Proxy::Proxy (Peano_of_Type ty tys))
235
236 -- ** Type 'Unlift_Type'
237 -- | Apply 'Peano_of_Type' on 'Unlift_TypeP'.
238 type Unlift_Type ty tys
239 = Unlift_TypeP (Peano_of_Type ty tys) ty tys
240
241 -- *** Class 'Unlift_TypeP'
242 -- | Try to unlift a given type out of a given type stack including it,
243 -- by deconstructing the appropriate sequence of 'Type_Alt_Curr' and 'Type_Alt_Next'.
244 class Unlift_TypeP (p:: *) ty tys where
245 type_unliftN :: forall (root:: * -> *) h. Proxy p -> tys root h -> Maybe (ty root h)
246 instance Unlift_TypeP Zero curr curr where
247 type_unliftN _ = Just
248 instance Unlift_TypeP Zero curr (Type_Alt curr next) where
249 type_unliftN _ (Type_Alt_Curr x) = Just x
250 type_unliftN _ (Type_Alt_Next _) = Nothing
251 instance
252 Unlift_TypeP p other next =>
253 Unlift_TypeP (Succ p) other (Type_Alt curr next) where
254 type_unliftN _ (Type_Alt_Next x) = type_unliftN (Proxy::Proxy p) x
255 type_unliftN _ (Type_Alt_Curr _) = Nothing
256
257 -- | Convenient wrapper around 'type_unliftN',
258 -- passing it the 'Peano' number from 'Peano_of_Type'.
259 unlift_type
260 :: forall ty tys (root:: * -> *) h.
261 Unlift_Type ty tys =>
262 tys root h -> Maybe (ty root h)
263 unlift_type = type_unliftN (Proxy::Proxy (Peano_of_Type ty tys))
264
265 -- * Type 'Exists_Type'
266 -- | Existential data type wrapping the index of a type.
267 data Exists_Type ty
268 = forall h. Exists_Type (ty h)
269 instance -- Eq
270 Eq_Type ty =>
271 Eq (Exists_Type ty) where
272 Exists_Type xh == Exists_Type yh =
273 isJust $ xh `eq_type` yh
274 instance -- Show
275 String_from_Type ty =>
276 Show (Exists_Type ty) where
277 show (Exists_Type ty) = string_from_type ty
278
279 -- * Type 'Exists_Type_and_Repr'
280 data Exists_Type_and_Repr ty repr
281 = forall h.
282 Exists_Type_and_Repr (ty h) (repr h)