]> Git — Sourcephile - haskell/symantic.git/blob - symantic/Language/Symantic/Compiling/Term.hs
Add some Eq and Show instances.
[haskell/symantic.git] / symantic / Language / Symantic / Compiling / Term.hs
1 {-# LANGUAGE AllowAmbiguousTypes #-}
2 {-# LANGUAGE ConstraintKinds #-}
3 {-# LANGUAGE ExistentialQuantification #-}
4 {-# LANGUAGE GADTs #-}
5 {-# LANGUAGE TypeInType #-}
6 {-# LANGUAGE UndecidableInstances #-}
7 {-# OPTIONS_GHC -fno-warn-orphans #-}
8 module Language.Symantic.Compiling.Term where
9
10 import Data.Maybe (isJust)
11 import Data.Semigroup (Semigroup(..))
12 import qualified Data.Kind as K
13 import qualified Data.Set as Set
14 import qualified Data.Text as Text
15
16 import Language.Symantic.Grammar
17 import Language.Symantic.Interpreting
18 import Language.Symantic.Transforming.Trans
19 import Language.Symantic.Typing
20
21 -- * Type 'Term'
22 data Term src ss ts vs (t::K.Type)
23 = Term (Type src vs (QualOf t))
24 (Type src vs (UnQualOf t))
25 (TeSym ss ts t)
26 instance Source src => Eq (Term src ss ts vs t) where
27 Term qx tx _ == Term qy ty _ = qx == qy && tx == ty
28 instance Source src => Show (Term src ss ts vs t) where
29 showsPrec p (Term q t _te) = showsPrec p (q #> t)
30
31 -- Source
32 type instance SourceOf (Term src ss ts vs t) = src
33 instance Source src => Sourced (Term src ss ts vs t) where
34 sourceOf (Term _q t _te) = sourceOf t
35 setSource (Term q t te) src = Term q (setSource t src) te
36
37 -- Const
38 instance ConstsOf (Term src ss ts vs t) where
39 constsOf (Term q t _te) = constsOf q `Set.union` constsOf t
40
41 -- Var
42 type instance VarsOf (Term src ss ts vs t) = vs
43 instance LenVars (Term src ss ts vs t) where
44 lenVars (Term _q t _te) = lenVars t
45 instance AllocVars (Term src ss ts) where
46 allocVarsL len (Term q t te) = Term (allocVarsL len q) (allocVarsL len t) te
47 allocVarsR len (Term q t te) = Term (allocVarsR len q) (allocVarsR len t) te
48
49 -- Fam
50 instance ExpandFam (Term src ss ts vs t) where
51 expandFam (Term q t te) = Term (expandFam q) (expandFam t) te
52
53 -- ** Type 'TermT'
54 -- | 'Term' with existentialized 'Type'.
55 data TermT src ss ts vs = forall t. TermT (Term src ss ts vs t)
56 instance Source src => Show (TermT src ss ts vs) where
57 showsPrec p (TermT t) = showsPrec p t
58
59 -- ** Type 'TermVT'
60 -- | 'Term' with existentialized 'Var's and 'Type'.
61 data TermVT src ss ts = forall vs t. TermVT (Term src ss ts vs t)
62 instance Source src => Eq (TermVT src ss ts) where
63 TermVT x == TermVT y =
64 let (Term qx' tx' _, Term qy' ty' _) = appendVars x y in
65 isJust $ (qx' #> tx') `eqTypeKi` (qy' #> ty')
66 instance Source src => Show (TermVT src ss ts) where
67 showsPrec p (TermVT t) = showsPrec p t
68 type instance SourceOf (TermVT src ss ts) = src
69 instance Source src => Sourced (TermVT src ss ts) where
70 sourceOf (TermVT t) = sourceOf t
71 setSource (TermVT t) src = TermVT $ setSource t src
72
73 liftTermVT :: TermVT src ss '[] -> TermVT src ss ts
74 liftTermVT (TermVT (Term q t (TeSym te))) =
75 TermVT $ Term @_ @_ @_ @_ @(_ #> _) q t $
76 TeSym $ \_c -> te CtxTeZ
77
78 -- ** Type 'TermAVT'
79 -- | Like 'TermVT', but 'CtxTe'-free.
80 data TermAVT src ss = forall vs t. TermAVT (forall ts. Term src ss ts vs t)
81 type instance SourceOf (TermAVT src ss) = src
82 instance Source src => Sourced (TermAVT src ss) where
83 sourceOf (TermAVT t) = sourceOf t
84 setSource (TermAVT t) src = TermAVT (setSource t src)
85 instance Source src => Eq (TermAVT src ss) where
86 TermAVT x == TermAVT y =
87 let (Term qx' tx' _, Term qy' ty' _) = appendVars x y in
88 isJust $ (qx' #> tx') `eqTypeKi` (qy' #> ty')
89 instance Source src => Show (TermAVT src ss) where
90 showsPrec p (TermAVT t) = showsPrec p t
91
92 -- * Type 'TeSym'
93 -- | Symantic of a 'Term'.
94 newtype TeSym ss ts (t::K.Type)
95 = TeSym
96 ( forall term.
97 Syms ss term =>
98 Sym_Lambda term =>
99 QualOf t =>
100 CtxTe term ts -> term (UnQualOf t)
101 )
102
103 -- | Like 'TeSym', but 'CtxTe'-free
104 -- and using 'inj_Sym' to be able to use 'Sym'@ (@'Proxy'@ s)@ inside.
105 teSym ::
106 forall s ss ts t.
107 Inj_Sym ss s =>
108 (forall term. Sym (Proxy s) term => Sym_Lambda term => QualOf t => term (UnQualOf t)) ->
109 TeSym ss ts t
110 teSym t = inj_Sym @s (TeSym $ const t)
111
112 -- ** Type family 'QualOf'
113 -- | Qualification
114 type family QualOf (t::K.Type) :: Constraint where
115 QualOf (q #> t) = q -- (q # QualOf t)
116 QualOf t = (()::Constraint)
117
118 -- ** Type family 'UnQualOf'
119 -- | Unqualification
120 type family UnQualOf (t::K.Type) :: K.Type where
121 UnQualOf (q #> t) = t -- UnQualOf t
122 UnQualOf t = t
123
124 -- | Return 'K.Constraint' and 'K.Type' part of given 'Type'.
125 unQualTy ::
126 Source src =>
127 Type src vs (t::K.Type) ->
128 ( TypeK src vs K.Constraint
129 , TypeK src vs K.Type )
130 unQualTy (TyApp _ (TyApp _ c q) t)
131 | Just HRefl <- proj_ConstKiTy @(K (#>)) @(#>) c
132 = (TypeK q, TypeK t)
133 unQualTy t = (TypeK $ noConstraintLen (lenVars t), TypeK t)
134
135 -- | Remove 'K.Constraint's from given 'Type'.
136 unQualsTy :: Source src => Type src vs (t::kt) -> TypeK src vs kt
137 unQualsTy (TyApp _ (TyApp _ c _q) t)
138 | Just HRefl <- proj_ConstKiTy @(K (#>)) @(#>) c
139 = unQualsTy t
140 unQualsTy (TyApp src f a)
141 | TypeK f' <- unQualsTy f
142 , TypeK a' <- unQualsTy a
143 = TypeK $ TyApp src f' a'
144 unQualsTy t = TypeK t
145
146 -- * Type 'CtxTe'
147 -- | GADT for an /interpreting context/:
148 -- accumulating at each /lambda abstraction/
149 -- the @term@ of the introduced variable.
150 data CtxTe (term::K.Type -> K.Type) (hs::[K.Type]) where
151 CtxTeZ :: CtxTe term '[]
152 CtxTeS :: term t
153 -> CtxTe term ts
154 -> CtxTe term (t ': ts)
155 infixr 5 `CtxTeS`
156
157 -- ** Type 'TermDef'
158 -- | Convenient type alias for defining 'Term'.
159 type TermDef s vs t = forall src ss ts. Source src => Inj_Sym ss s => Term src ss ts vs t
160
161 -- ** Type family 'Sym'
162 type family Sym (s::K.Type) :: {-term-}(K.Type -> K.Type) -> Constraint
163
164 -- ** Type family 'Syms'
165 type family Syms (ss::[K.Type]) (term:: K.Type -> K.Type) :: Constraint where
166 Syms '[] term = ()
167 Syms (s ': ss) term = (Sym s term, Syms ss term)
168
169 -- ** Type 'Inj_Sym'
170 -- | Convenient type synonym wrapping 'Inj_SymP'
171 -- applied on the correct 'Index'.
172 type Inj_Sym ss s = Inj_SymP (Index ss (Proxy s)) ss s
173
174 -- | Inject a given /symantic/ @s@ into a list of them,
175 -- by returning a function which given a 'TeSym' on @s@
176 -- returns the same 'TeSym' on @ss@.
177 inj_Sym ::
178 forall s ss ts t.
179 Inj_Sym ss s =>
180 TeSym '[Proxy s] ts t ->
181 TeSym ss ts t
182 inj_Sym = inj_SymP (Proxy @(Index ss (Proxy s)))
183
184 -- *** Class 'Inj_SymP'
185 class Inj_SymP p ss s where
186 inj_SymP :: Proxy p -> TeSym '[Proxy s] ts t -> TeSym ss ts t
187 instance Inj_SymP Zero (Proxy s ': ss) (s::k) where
188 inj_SymP _ = \(TeSym te) -> TeSym te
189 instance Inj_SymP p ss s => Inj_SymP (Succ p) (not_s ': ss) s where
190 inj_SymP _p = \(te::TeSym '[Proxy s] ts t) ->
191 case inj_SymP (Proxy @p) te :: TeSym ss ts t of
192 TeSym te' -> TeSym te'
193
194 -- * Class 'Sym_Lambda'
195 class Sym_Lambda term where
196 -- | /Function application/.
197 apply :: term ((a -> b) -> a -> b)
198 default apply :: Sym_Lambda (UnT term) => Trans term => term ((a -> b) -> a -> b)
199 apply = trans apply
200
201 -- | /Lambda application/.
202 app :: term (a -> b) -> (term a -> term b); infixr 0 `app`
203 default app :: Sym_Lambda (UnT term) => Trans term => term (arg -> res) -> term arg -> term res
204 app = trans2 app
205
206 -- | /Lambda abstraction/.
207 lam :: (term a -> term b) -> term (a -> b)
208 default lam :: Sym_Lambda (UnT term) => Trans term => (term arg -> term res) -> term (arg -> res)
209 lam f = trans $ lam (unTrans . f . trans)
210
211 -- | Convenient 'lam' and 'app' wrapper.
212 let_ :: term var -> (term var -> term res) -> term res
213 let_ x f = lam f `app` x
214
215 -- | /Lambda abstraction/ beta-reducable without duplication
216 -- (i.e. whose variable is used once at most),
217 -- mainly useful in compiled 'Term's
218 -- whose symantics are not a single 'term'
219 -- but a function between 'term's,
220 -- which happens because those are more usable when used as an embedded DSL.
221 lam1 :: (term a -> term b) -> term (a -> b)
222 default lam1 :: Sym_Lambda (UnT term) => Trans term => (term a -> term b) -> term (a -> b)
223 lam1 = lam
224
225 -- | /Qualification/.
226 --
227 -- Workaround used in 'readTermWithCtx'.
228 qual :: proxy q -> term t -> term (q #> t)
229 default qual :: Sym_Lambda (UnT term) => Trans term => proxy q -> term t -> term (q #> t)
230 qual q = trans1 (qual q)
231
232 lam2 :: Sym_Lambda term => (term a -> term b -> term c) -> term (a -> b -> c)
233 lam3 :: Sym_Lambda term => (term a -> term b -> term c -> term d) -> term (a -> b -> c -> d)
234 lam4 :: Sym_Lambda term => (term a -> term b -> term c -> term d -> term e) -> term (a -> b -> c -> d -> e)
235 lam2 f = lam1 $ lam1 . f
236 lam3 f = lam1 $ lam2 . f
237 lam4 f = lam1 $ lam3 . f
238
239 -- Interpreting
240 instance Sym_Lambda Eval where
241 apply = Eval ($)
242 app = (<*>)
243 lam f = Eval (unEval . f . Eval)
244 lam1 = lam
245 qual _q (Eval t) = Eval $ Qual t
246 let_ x f = f x -- NOTE: like flip ($)
247 instance Sym_Lambda View where
248 apply = View $ \_po _v -> "($)"
249 app (View a1) (View a2) = View $ \po v ->
250 parenInfix po op $
251 a1 (op, SideL) v <> " " <> a2 (op, SideR) v
252 where op = infixN 10
253 lam f = View $ \po v ->
254 let x = "x" <> Text.pack (show v) in
255 parenInfix po op $
256 "\\" <> x <> " -> " <>
257 unView (f (View $ \_po _v -> x)) (op, SideL) (succ v)
258 where op = infixN 1
259 lam1 = lam
260 qual _q (View t) = View t -- TODO: maybe print q
261 let_ x f =
262 View $ \po v ->
263 let x' = "x" <> Text.pack (show v) in
264 parenInfix po op $
265 "let" <> " " <> x' <> " = "
266 <> unView x (infixN 0, SideL) (succ v) <> " in "
267 <> unView (f (View $ \_po _v -> x')) (op, SideL) (succ v)
268 where op = infixN 1
269 instance (Sym_Lambda r1, Sym_Lambda r2) => Sym_Lambda (Dup r1 r2) where
270 apply = dup0 @Sym_Lambda apply
271 app = dup2 @Sym_Lambda app
272 lam f = dup_1 lam_f `Dup` dup_2 lam_f
273 where lam_f = lam f
274 lam1 = lam
275 qual q = dup1 @Sym_Lambda (qual q)