1 {-# LANGUAGE FlexibleInstances #-}
2 {-# LANGUAGE MultiParamTypeClasses #-}
3 {-# LANGUAGE NoImplicitPrelude #-}
4 {-# LANGUAGE TypeFamilies #-}
5 -- | Interpreter to duplicate the representation of an expression
6 -- in order to evaluate it with different interpreters.
8 -- NOTE: this is a more verbose, less clear,
9 -- and maybe less efficient alternative
10 -- to maintaining the universal polymorphism of @repr@ at parsing time
11 -- as done with 'Forall_Repr_with_Context';
12 -- it is mainly here for the sake of curiosity.
13 module Language.Symantic.Repr.Dup where
15 import Data.Foldable (foldr)
17 import Language.Symantic.Expr
19 -- | Interpreter's data.
20 data Dup repr1 repr2 a
29 ) => Sym_Bool (Dup r1 r2) where
30 bool x = bool x `Dup` bool x
31 not (x1 `Dup` x2) = not x1 `Dup` not x2
32 (&&) (x1 `Dup` x2) (y1 `Dup` y2) = (&&) x1 y1 `Dup` (&&) x2 y2
33 (||) (x1 `Dup` x2) (y1 `Dup` y2) = (||) x1 y1 `Dup` (||) x2 y2
34 xor (x1 `Dup` x2) (y1 `Dup` y2) = xor x1 y1 `Dup` xor x2 y2
38 ) => Sym_Int (Dup r1 r2) where
39 int x = int x `Dup` int x
40 abs (x1 `Dup` x2) = abs x1 `Dup` abs x2
41 negate (x1 `Dup` x2) = negate x1 `Dup` negate x2
42 (+) (x1 `Dup` x2) (y1 `Dup` y2) = (+) x1 y1 `Dup` (+) x2 y2
43 (-) (x1 `Dup` x2) (y1 `Dup` y2) = (-) x1 y1 `Dup` (-) x2 y2
44 (*) (x1 `Dup` x2) (y1 `Dup` y2) = (*) x1 y1 `Dup` (*) x2 y2
45 mod (x1 `Dup` x2) (y1 `Dup` y2) = mod x1 y1 `Dup` mod x2 y2
49 ) => Sym_Eq (Dup r1 r2) where
50 (==) (x1 `Dup` x2) (y1 `Dup` y2) = (==) x1 y1 `Dup` (==) x2 y2
54 ) => Sym_Ord (Dup r1 r2) where
55 compare (x1 `Dup` x2) (y1 `Dup` y2) =
56 compare x1 y1 `Dup` compare x2 y2
60 ) => Sym_If (Dup r1 r2) where
61 if_ (c1 `Dup` c2) (ok1 `Dup` ok2) (ko1 `Dup` ko2) =
62 if_ c1 ok1 ko1 `Dup` if_ c2 ok2 ko2
66 ) => Sym_When (Dup r1 r2) where
67 when (c1 `Dup` c2) (ok1 `Dup` ok2) =
68 when c1 ok1 `Dup` when c2 ok2
72 ) => Sym_List (Dup r1 r2) where
73 list_empty = list_empty `Dup` list_empty
74 list_cons (a1 `Dup` a2) (l1 `Dup` l2) = list_cons a1 l1 `Dup` list_cons a2 l2
77 foldr (\(x1 `Dup` x2) (xs1, xs2) ->
78 (x1:xs1, x2:xs2)) ([], []) l in
80 instance -- Sym_List_Lam
83 ) => Sym_List_Lam lam (Dup r1 r2) where
84 list_filter (f1 `Dup` f2) (l1 `Dup` l2) =
85 list_filter f1 l1 `Dup` list_filter f2 l2
89 ) => Sym_Maybe (Dup r1 r2) where
90 nothing = nothing `Dup` nothing
91 just (a1 `Dup` a2) = just a1 `Dup` just a2
92 instance -- Sym_Maybe_Lam
93 ( Sym_Maybe_Lam lam r1
94 , Sym_Maybe_Lam lam r2
95 ) => Sym_Maybe_Lam lam (Dup r1 r2) where
96 maybe (m1 `Dup` m2) (n1 `Dup` n2) (j1 `Dup` j2) =
99 instance -- Sym_Lambda
102 ) => Sym_Lambda lam (Dup r1 r2) where
103 type Lambda_from_Repr (Dup r1 r2) = Lambda_from_Repr r1
104 app (f1 `Dup` f2) (x1 `Dup` x2) = app f1 x1 `Dup` app f2 x2
105 inline f = dup1 (inline f) `Dup` dup2 (inline f)
106 val f = dup1 (val f) `Dup` dup2 (val f)
107 lazy f = dup1 (lazy f) `Dup` dup2 (lazy f)
108 instance -- Sym_Tuple2
111 ) => Sym_Tuple2 (Dup r1 r2) where
112 tuple2 (a1 `Dup` a2) (b1 `Dup` b2) =
113 tuple2 a1 b1 `Dup` tuple2 a2 b2
117 ) => Sym_Map (Dup r1 r2) where
118 map_from_list (l1 `Dup` l2) =
119 map_from_list l1 `Dup` map_from_list l2
120 instance -- Sym_Map_Lam
123 ) => Sym_Map_Lam lam (Dup r1 r2) where
124 map_map (f1 `Dup` f2) (m1 `Dup` m2) =
125 map_map f1 m1 `Dup` map_map f2 m2