]> Git — Sourcephile - haskell/symantic.git/blob - symantic-grammar/Language/Symantic/Grammar/EBNF.hs
Fix lexeme to progress over indented lines.
[haskell/symantic.git] / symantic-grammar / Language / Symantic / Grammar / EBNF.hs
1 {-# LANGUAGE DeriveFunctor #-}
2 {-# LANGUAGE GADTs #-}
3 {-# LANGUAGE GeneralizedNewtypeDeriving #-}
4 {-# LANGUAGE NoMonomorphismRestriction #-}
5 {-# LANGUAGE OverloadedStrings #-}
6 {-# LANGUAGE StandaloneDeriving #-}
7 {-# OPTIONS_GHC -fno-warn-tabs #-}
8 module Language.Symantic.Grammar.EBNF where
9
10 import Control.Applicative (Applicative(..))
11 import Control.Monad
12 import Data.Bool as Bool
13 import Data.Semigroup hiding (option)
14 import Data.String (IsString(..))
15 import Data.Text (Text)
16 import qualified Data.Text as Text
17 import Prelude hiding (any)
18
19 -- * Type 'EBNF'
20 -- | Extended Backus-Naur-Form, following the
21 -- <http://standards.iso.org/ittf/PubliclyAvailableStandards/s026153_ISO_IEC_14977_1996(E).zip ISO-IEC-14977>
22 -- notations, augmented with the following notations:
23 --
24 -- * @("U+", code_point)@: for <http://unicode.org/versions/Unicode8.0.0/ ISO-IEC-10646> (aka. Unicode).
25 -- * @(char, "…", char)@: for character range.
26 -- * @(rule, "&", rule)@: for the intersection.
27 -- * @(rule, "-", rule)@: for the difference.
28 -- * @(rule, " ", rule)@: for rule application.
29 data EBNF a = EBNF { unEBNF :: RuleMode -> (Infix, LR) -> Text }
30
31 runEBNF :: EBNF a -> Text
32 runEBNF (EBNF g) = g RuleMode_Body (infixN0, L)
33
34 -- | Get textual rendition of given EBNF rule.
35 renderEBNF :: RuleDef a -> Text
36 renderEBNF = runEBNF . unRuleDef
37
38 ebnf_const :: Text -> EBNF a
39 ebnf_const t = EBNF $ \_rm _op -> t
40
41 -- * Class 'Gram_Rule'
42 type Id a = a -> a
43 class Gram_Rule g where
44 rule :: Text -> Id (g a)
45 rule _n = id
46 rule1 :: Text -> Id (g a -> g b)
47 rule1 _n g = g
48 rule2 :: Text -> Id (g a -> g b -> g c)
49 rule2 _n g = g
50 rule3 :: Text -> Id (g a -> g b -> g c -> g d)
51 rule3 _n g = g
52 rule4 :: Text -> Id (g a -> g b -> g c -> g d -> g e)
53 rule4 _n g = g
54
55 -- ** Type 'RuleMode'
56 data RuleMode
57 = RuleMode_Body -- ^ Generate the body of the rule.
58 | RuleMode_Ref -- ^ Generate a ref to the rule.
59 deriving (Eq, Show)
60
61 -- ** Type 'RuleDef'
62 newtype RuleDef a = RuleDef { unRuleDef :: EBNF a }
63 deriving (Functor, Applicative)
64 deriving instance Gram_RuleDef RuleDef
65 deriving instance Try RuleDef
66 instance Gram_Rule RuleDef where
67 rule n = rule_def (ebnf_const n)
68 rule1 n g a = rule_def (ebnf_const n `ebnf_arg` unRuleDef a) (g a)
69 rule2 n g a b = rule_def (ebnf_const n `ebnf_arg` unRuleDef a `ebnf_arg` unRuleDef b) (g a b)
70 rule3 n g a b c = rule_def (ebnf_const n `ebnf_arg` unRuleDef a `ebnf_arg` unRuleDef b `ebnf_arg` unRuleDef c) (g a b c)
71 rule4 n g a b c d = rule_def (ebnf_const n `ebnf_arg` unRuleDef a `ebnf_arg` unRuleDef b `ebnf_arg` unRuleDef c `ebnf_arg` unRuleDef d) (g a b c d)
72
73 -- *** Class 'Gram_RuleDef'
74 class Gram_RuleDef g where
75 rule_def :: EBNF () -> g a -> RuleDef a
76 rule_arg :: Text -> g a
77 instance Show (EBNF a) where
78 show = Text.unpack . runEBNF
79 instance Functor EBNF where
80 fmap _f (EBNF x) = EBNF x
81 instance Applicative EBNF where
82 pure _ = ebnf_const $ "\"\""
83 EBNF f <*> EBNF x = EBNF $ \bo po -> infix_paren po op $
84 f bo (op, L) <> ", " <> x bo (op, R)
85 where op = infixB L 10
86 instance Gram_Rule EBNF where
87 rule n g = EBNF $ \rm po ->
88 case rm of
89 RuleMode_Body -> unEBNF g RuleMode_Ref po
90 RuleMode_Ref -> n
91 rule1 n g a = EBNF $ \rm po ->
92 case rm of
93 RuleMode_Body -> unEBNF (g a) RuleMode_Ref po
94 RuleMode_Ref -> unEBNF (ebnf_const n `ebnf_arg` a) RuleMode_Ref po
95 rule2 n g a b = EBNF $ \rm po ->
96 case rm of
97 RuleMode_Body -> unEBNF (g a b) RuleMode_Ref po
98 RuleMode_Ref -> unEBNF (ebnf_const n `ebnf_arg` a `ebnf_arg` b) RuleMode_Ref po
99 rule3 n g a b c = EBNF $ \rm po ->
100 case rm of
101 RuleMode_Body -> unEBNF (g a b c) RuleMode_Ref po
102 RuleMode_Ref -> unEBNF (ebnf_const n `ebnf_arg` a `ebnf_arg` b `ebnf_arg` c) RuleMode_Ref po
103 rule4 n g a b c d = EBNF $ \rm po ->
104 case rm of
105 RuleMode_Body -> unEBNF (g a b c d) RuleMode_Ref po
106 RuleMode_Ref -> unEBNF (ebnf_const n `ebnf_arg` a `ebnf_arg` b `ebnf_arg` c `ebnf_arg` d) RuleMode_Ref po
107 instance Gram_RuleDef EBNF where
108 rule_arg = ebnf_const
109 rule_def call body =
110 RuleDef $ EBNF $ \mo po ->
111 case mo of
112 RuleMode_Ref -> unEBNF call mo po
113 RuleMode_Body ->
114 Text.intercalate " "
115 [ unEBNF call RuleMode_Ref (infixN0, L)
116 , "="
117 , unEBNF body RuleMode_Ref (infixN0, R)
118 , ";"
119 ]
120
121 -- | Helper for 'Gram_Rule' 'EBNF'.
122 ebnf_arg :: EBNF a -> EBNF b -> EBNF ()
123 ebnf_arg (EBNF a) (EBNF b) = EBNF $ \bo po -> infix_paren po op $
124 a bo (op, L) <> " " <> b bo (op, R)
125 where op = infixL 11
126 infixl 5 `ebnf_arg`
127
128 -- ** Type 'Precedence'
129 type Precedence = Int
130
131 -- ** Type 'Associativity'
132 -- type Associativity = LR
133 data Associativity
134 = AssocL -- ^ Associate to the left: @a ¹ b ² c == (a ¹ b) ² c@
135 | AssocR -- ^ Associate to the right: @a ¹ b ² c == a ¹ (b ² c)@
136 | AssocB LR -- ^ Associate to both side, but to 'LR' when reading.
137 deriving (Eq, Show)
138
139 -- ** Type 'Infix'
140 data Infix
141 = Infix
142 { infix_assoc :: Maybe Associativity
143 , infix_prece :: Precedence
144 } deriving (Eq, Show)
145
146 infixL :: Precedence -> Infix
147 infixL = Infix (Just AssocL)
148
149 infixR :: Precedence -> Infix
150 infixR = Infix (Just AssocR)
151
152 infixB :: LR -> Precedence -> Infix
153 infixB = Infix . Just . AssocB
154
155 infixN :: Precedence -> Infix
156 infixN = Infix Nothing
157
158 infixN0 :: Infix
159 infixN0 = infixN 0
160
161 infixN5 :: Infix
162 infixN5 = infixN 5
163
164 infix_paren
165 :: (Semigroup s, IsString s)
166 => (Infix, LR) -> Infix -> s -> s
167 infix_paren (po, lr) op s =
168 if infix_prece op < infix_prece po
169 || infix_prece op == infix_prece po
170 && Bool.not associate
171 then fromString "(" <> s <> fromString ")"
172 else s
173 where
174 associate =
175 case (lr, infix_assoc po) of
176 (_, Just AssocB{}) -> True
177 (L, Just AssocL) -> True
178 (R, Just AssocR) -> True
179 _ -> False
180
181 -- ** Type 'LR'
182 data LR
183 = L -- ^ Left
184 | R -- ^ Right
185 deriving (Eq, Show)
186
187 -- * Type 'Try'
188 class Try g where
189 try :: g a -> g a
190 instance Try EBNF where
191 try = id