1 {-# LANGUAGE ConstraintKinds #-}
2 {-# LANGUAGE DefaultSignatures #-}
4 {-# LANGUAGE FlexibleContexts #-}
5 {-# LANGUAGE FlexibleInstances #-}
6 {-# LANGUAGE MultiParamTypeClasses #-}
7 {-# LANGUAGE ScopedTypeVariables #-}
8 {-# LANGUAGE TypeFamilies #-}
9 {-# LANGUAGE TypeOperators #-}
10 {-# LANGUAGE UndecidableInstances #-}
11 -- | Expression for 'Functor'.
12 module Language.Symantic.Expr.Functor where
14 import Data.Proxy (Proxy(..))
15 import Data.Type.Equality ((:~:)(Refl))
16 import Prelude hiding (fmap)
18 import Language.Symantic.Type
19 -- import Language.Symantic.Repr.Dup
20 import Language.Symantic.Trans.Common
21 import Language.Symantic.Expr.Common
22 import Language.Symantic.Expr.Lambda
24 -- * Class 'Sym_Functor'
26 class Sym_Functor lam repr where
28 :: Functor_with_Lambda f
29 => repr (Lambda lam a b)
34 :: (Trans t repr, Functor_with_Lambda f)
35 => t repr (Lambda lam a b)
38 fmap = trans_map2 fmap
40 -- | Convenient alias.
42 ( Sym_Functor lam repr
43 , Functor_with_Lambda f )
44 => repr (Lambda lam a b)
50 -- ** Class 'Functor_with_Lambda'
51 -- | A class alias to add 'Traversable' to 'Functor'.
53 -- NOTE: 'Traversable' is required by the 'Repr_Host' instance (which uses 'sequence').
54 -- Imposing this 'Traversable' class to mere 'Functor's is annoying
55 -- because obviously not all data types have both
56 -- an instance of 'Functor' and 'Traversable',
57 -- but I cannot see another way to do when supporting 'val' and 'lazy' 'Lambda's
58 -- whose @lam@ wrapping has to be extracted from @f (lam a)@ to @lam (f a)@,
59 -- which is exactly which is done by @sequence :: (Traversable t, Monad m) => t (m a) -> m (t a)@.
60 class (Functor f, Traversable f) => Functor_with_Lambda f
61 instance (Functor f, Traversable f) => Functor_with_Lambda f
62 instance Constraint_Type1 Functor_with_Lambda (Type_Fun lam root)
63 instance Constraint_Type1 Functor_with_Lambda (Type_Bool root)
64 instance Constraint_Type1 Functor_with_Lambda (Type_Int root)
65 instance Constraint_Type1 Functor_with_Lambda (Type_Ordering root)
66 instance Constraint_Type1 Functor_with_Lambda (Type_Unit root)
67 instance Constraint_Type1 Functor_with_Lambda (Type_Var root)
69 -- * Type 'Expr_Functor'
71 data Expr_Functor (lam:: * -> *) (root:: *)
72 type instance Root_of_Expr (Expr_Functor lam root) = root
73 type instance Type_of_Expr (Expr_Functor lam root) = No_Type
74 type instance Sym_of_Expr (Expr_Functor lam root) repr = (Sym_Functor lam repr)
75 type instance Error_of_Expr ast (Expr_Functor lam root) = No_Error_Expr
79 :: forall root ty lam ast hs ret.
80 ( ty ~ Type_Root_of_Expr (Expr_Functor lam root)
82 , Eq_Type (Type_Root_of_Expr root)
84 , Lift_Type (Type_Fun lam) (Type_of_Expr root)
85 , Unlift_Type (Type_Fun lam) (Type_of_Expr root)
86 , Unlift_Type1 (Type_of_Expr root)
87 , Lift_Error_Expr (Error_Expr (Error_of_Type ast ty) ty ast)
88 (Error_of_Expr ast root)
89 , Root_of_Expr root ~ root
90 , Constraint_Type1 Functor_with_Lambda ty
92 -> Expr_From ast (Expr_Functor lam root) hs ret
93 fmap_from ast_g ast_fa ex ast ctx k =
94 -- NOTE: fmap :: Functor f => (a -> b) -> f a -> f b
95 expr_from (Proxy::Proxy root) ast_g ctx $
96 \(ty_g::Type_Root_of_Expr root h_g) (Forall_Repr_with_Context g) ->
97 expr_from (Proxy::Proxy root) ast_fa ctx $
98 \(ty_fa::Type_Root_of_Expr root h_fa) (Forall_Repr_with_Context fa) ->
99 check_type_fun ex ast ty_g $ \(ty_g_a `Type_Fun` ty_g_b
100 :: Type_Fun lam (Type_Root_of_Expr root) h_g) ->
101 check_type1 ex ast ty_fa $ \(Type_Type1 f ty_fa_a, Lift_Type1 f_lift) ->
102 check_constraint1_type ex (Proxy::Proxy Functor_with_Lambda) ast ty_fa $ \Dict ->
103 check_eq_type ex ast ty_g_a ty_fa_a $ \Refl ->
104 k (Type_Root $ f_lift $ Type_Type1 f ty_g_b) $ Forall_Repr_with_Context $
105 \c -> fmap (g c) (fa c)