]> Git — Sourcephile - haskell/symantic.git/blob - Language/Symantic/Expr/List.hs
init
[haskell/symantic.git] / Language / Symantic / Expr / List.hs
1 {-# LANGUAGE DefaultSignatures #-}
2 {-# LANGUAGE FlexibleContexts #-}
3 {-# LANGUAGE FlexibleInstances #-}
4 {-# LANGUAGE MultiParamTypeClasses #-}
5 {-# LANGUAGE ScopedTypeVariables #-}
6 {-# LANGUAGE TypeFamilies #-}
7 {-# LANGUAGE TypeOperators #-}
8 {-# OPTIONS_GHC -fno-warn-orphans #-}
9 -- | Expression for 'List'.
10 module Language.Symantic.Expr.List where
11
12 import Data.Proxy (Proxy(..))
13 import Data.Type.Equality ((:~:)(Refl))
14
15 import Language.Symantic.Type
16 import Language.Symantic.Repr.Dup
17 import Language.Symantic.Trans.Common
18 import Language.Symantic.Expr.Common
19 import Language.Symantic.Expr.Lambda
20 import Language.Symantic.Expr.Functor
21 import Language.Symantic.Expr.Applicative
22
23 -- * Class 'Sym_List_Lam'
24 -- | Symantic.
25 class Sym_List repr where
26 list_empty :: repr [a]
27 list_cons :: repr a -> repr [a] -> repr [a]
28 list :: [repr a] -> repr [a]
29
30 default list_empty :: Trans t repr => t repr [a]
31 default list_cons :: Trans t repr => t repr a -> t repr [a] -> t repr [a]
32 default list :: Trans t repr => [t repr a] -> t repr [a]
33 list_empty = trans_lift list_empty
34 list_cons = trans_map2 list_cons
35 list l = trans_lift $ list (trans_apply Prelude.<$> l)
36 -- | Symantic requiring a 'Lambda'.
37 class Sym_List_Lam lam repr where
38 list_filter
39 :: repr (Lambda lam a Bool)
40 -> repr [a]
41 -> repr [a]
42
43 default list_filter
44 :: Trans t repr
45 => t repr (Lambda lam a Bool)
46 -> t repr [a]
47 -> t repr [a]
48 list_filter = trans_map2 list_filter
49
50 instance -- Sym_List Dup
51 ( Sym_List r1
52 , Sym_List r2
53 ) => Sym_List (Dup r1 r2) where
54 list_empty = list_empty `Dup` list_empty
55 list_cons (a1 `Dup` a2) (l1 `Dup` l2) = list_cons a1 l1 `Dup` list_cons a2 l2
56 list l =
57 let (l1, l2) =
58 foldr (\(x1 `Dup` x2) (xs1, xs2) ->
59 (x1:xs1, x2:xs2)) ([], []) l in
60 list l1 `Dup` list l2
61 instance -- Sym_List_Lam Dup
62 ( Sym_List_Lam lam r1
63 , Sym_List_Lam lam r2
64 ) => Sym_List_Lam lam (Dup r1 r2) where
65 list_filter (f1 `Dup` f2) (l1 `Dup` l2) =
66 list_filter f1 l1 `Dup` list_filter f2 l2
67
68 -- * Type 'Expr_List'
69 -- | Expression.
70 data Expr_List (lam:: * -> *) (root:: *)
71 type instance Root_of_Expr (Expr_List lam root) = root
72 type instance Type_of_Expr (Expr_List lam root) = Type_List
73 type instance Sym_of_Expr (Expr_List lam root) repr = (Sym_List repr, Sym_List_Lam lam repr)
74 type instance Error_of_Expr ast (Expr_List lam root) = No_Error_Expr
75
76 instance Constraint_Type1 Functor_with_Lambda (Type_Type1 [] root) where
77 constraint_type1 _c (Type_Type1 _ _) = Just Dict
78 instance Constraint_Type1 Applicative_with_Lambda (Type_Type1 [] root) where
79 constraint_type1 _c (Type_Type1 _ _) = Just Dict
80
81 -- | Parsing utility to check that the given type is a 'Type_List'
82 -- or raise 'Error_Expr_Type_mismatch'.
83 check_type_list
84 :: forall ast ex root ty h ret.
85 ( root ~ Root_of_Expr ex
86 , ty ~ Type_Root_of_Expr ex
87 , Lift_Type Type_List (Type_of_Expr root)
88 , Unlift_Type Type_List (Type_of_Expr root)
89 , Lift_Error_Expr (Error_Expr (Error_of_Type ast ty) ty ast)
90 (Error_of_Expr ast root)
91 )
92 => Proxy ex -> ast -> ty h
93 -> (Type_List ty h -> Either (Error_of_Expr ast root) ret)
94 -> Either (Error_of_Expr ast root) ret
95 check_type_list ex ast ty k =
96 case unlift_type $ unType_Root ty of
97 Just ty_l -> k ty_l
98 Nothing -> Left $
99 error_expr ex $
100 Error_Expr_Type_mismatch ast
101 (Exists_Type (type_list $ type_var SZero
102 :: Type_Root_of_Expr ex [Zero]))
103 (Exists_Type ty)
104
105 -- | Parse 'list_empty'.
106 list_empty_from
107 :: forall root lam ty ty_root ast hs ret.
108 ( ty ~ Type_Root_of_Expr (Expr_List lam root)
109 , ty_root ~ Type_Root_of_Expr root
110 , Type_from ast ty_root
111 , Lift_Type_Root Type_List ty_root
112 , Lift_Error_Expr (Error_Expr (Error_of_Type ast ty) ty ast)
113 (Error_of_Expr ast root)
114 , Root_of_Expr root ~ root
115 ) => ast
116 -> Expr_From ast (Expr_List lam root) hs ret
117 list_empty_from ast_ty_a ex ast _ctx k =
118 either (\err -> Left $ error_expr ex $ Error_Expr_Type err ast) id $
119 type_from (Proxy::Proxy ty_root) ast_ty_a $ \ty_a -> Right $
120 k (type_list ty_a) $ Forall_Repr_with_Context $
121 const list_empty
122
123 -- | Parse 'list_cons'.
124 list_cons_from
125 :: forall root lam ty ast hs ret.
126 ( ty ~ Type_Root_of_Expr (Expr_List lam root)
127 , Eq_Type (Type_Root_of_Expr root)
128 , Expr_from ast root
129 , Lift_Type Type_List (Type_of_Expr root)
130 , Unlift_Type Type_List (Type_of_Expr root)
131 , Lift_Error_Expr (Error_Expr (Error_of_Type ast ty) ty ast)
132 (Error_of_Expr ast root)
133 , Root_of_Expr root ~ root
134 ) => ast -> ast
135 -> Expr_From ast (Expr_List lam root) hs ret
136 list_cons_from ast_a ast_l ex ast ctx k =
137 expr_from (Proxy::Proxy root) ast_a ctx $
138 \(ty_a::Type_Root_of_Expr root h_a) (Forall_Repr_with_Context a) ->
139 expr_from (Proxy::Proxy root) ast_l ctx $
140 \(ty_l::Type_Root_of_Expr root h_l) (Forall_Repr_with_Context l) ->
141 check_type_list ex ast ty_l $ \(Type_Type1 _ ty_l_a) ->
142 check_eq_type ex ast ty_a ty_l_a $ \Refl ->
143 k (type_list ty_a) $ Forall_Repr_with_Context $
144 \c -> list_cons (a c) (l c)
145
146 -- | Parse 'list'.
147 list_from
148 :: forall root lam ex ty ty_root ast hs ret.
149 ( ty ~ Type_Root_of_Expr (Expr_List lam root)
150 , ty_root ~ Type_Root_of_Expr root
151 , ex ~ Expr_List lam root
152 , Eq_Type (Type_Root_of_Expr root)
153 , Type_from ast ty_root
154 , Expr_from ast root
155 , Lift_Type Type_List (Type_of_Expr root)
156 , Unlift_Type Type_List (Type_of_Expr root)
157 , Lift_Error_Expr (Error_Expr (Error_of_Type ast ty) ty ast)
158 (Error_of_Expr ast root)
159 , Root_of_Expr root ~ root
160 , Root_of_Type ty_root ~ ty_root
161 ) => ast -> [ast]
162 -> Expr_From ast ex hs ret
163 list_from ast_ty_a ast_as =
164 case type_from (Proxy::Proxy ty_root)
165 ast_ty_a (Right . Exists_Type) of
166 Left err -> \ex ast _ctx _k -> Left $ error_expr ex $ Error_Expr_Type err ast
167 Right (Exists_Type ty_a) -> go ty_a [] ast_as
168 where
169 go :: Type_Root_of_Expr root ty_a
170 -> [Forall_Repr_with_Context root hs ty_a]
171 -> [ast]
172 -> Expr_From ast (Expr_List lam root) hs ret
173 go ty_a as [] _ex _ast _ctx k =
174 k (type_list ty_a) $ Forall_Repr_with_Context $
175 \c -> list ((\(Forall_Repr_with_Context a) -> a c) Prelude.<$> reverse as)
176 go ty_a as (ast_x:ast_xs) ex ast ctx k =
177 expr_from (Proxy::Proxy root) ast_x ctx $
178 \(ty_x::Type_Root_of_Expr root h_x) x ->
179 check_eq_type ex ast ty_a ty_x $ \Refl ->
180 go ty_a (x:as) ast_xs ex ast ctx k
181
182 -- | Parse 'list_filter'.
183 list_filter_from
184 :: forall root lam ty ty_root ast hs ret.
185 ( ty ~ Type_Root_of_Expr (Expr_List lam root)
186 , ty_root ~ Type_of_Expr root
187 , Eq_Type (Type_Root_of_Expr root)
188 , Expr_from ast root
189 , Lift_Type Type_Bool ty_root
190 , Lift_Type (Type_Fun lam) ty_root
191 , Unlift_Type (Type_Fun lam) ty_root
192 , Lift_Type Type_List ty_root
193 , Unlift_Type Type_List ty_root
194 , Lift_Error_Expr (Error_Expr (Error_of_Type ast ty) ty ast)
195 (Error_of_Expr ast root)
196 , Root_of_Expr root ~ root
197 ) => ast -> ast
198 -> Expr_From ast (Expr_List lam root) hs ret
199 list_filter_from ast_f ast_l ex ast ctx k =
200 expr_from (Proxy::Proxy root) ast_f ctx $
201 \(ty_f::Type_Root_of_Expr root h_f) (Forall_Repr_with_Context f) ->
202 expr_from (Proxy::Proxy root) ast_l ctx $
203 \(ty_l::Type_Root_of_Expr root h_l) (Forall_Repr_with_Context l) ->
204 check_type_fun ex ast ty_f $ \(ty_f_a `Type_Fun` ty_f_b
205 :: Type_Fun lam (Type_Root_of_Expr root) h_f) ->
206 check_eq_type ex ast type_bool ty_f_b $ \Refl ->
207 check_type_list ex ast ty_l $ \(Type_Type1 _ ty_l_a) ->
208 check_eq_type ex ast ty_f_a ty_l_a $ \Refl ->
209 k ty_l $ Forall_Repr_with_Context $
210 \c -> list_filter (f c) (l c)