1 {-# LANGUAGE UndecidableInstances #-}
2 {-# OPTIONS_GHC -fno-warn-orphans #-}
3 {-# OPTIONS_GHC -fconstraint-solver-iterations=5 #-}
4 -- | Symantic for @if@.
5 module Language.Symantic.Compiling.If where
8 import Data.Text (Text)
9 import qualified Data.Text as Text
10 import Data.Type.Equality ((:~:)(Refl))
12 import Language.Symantic.Parsing
13 import Language.Symantic.Typing
14 import Language.Symantic.Compiling.Term
15 import Language.Symantic.Interpreting
16 import Language.Symantic.Transforming.Trans
19 class Sym_If term where
20 if_ :: term Bool -> term a -> term a -> term a
21 default if_ :: Trans t term => t term Bool -> t term a -> t term a -> t term a
26 type instance Sym_of_Iface (Proxy If) = Sym_If
27 type instance Consts_of_Iface (Proxy If) = Consts_imported_by If
28 type instance Consts_imported_by If = '[ Proxy Bool ]
30 instance Sym_If HostI where
31 if_ (HostI b) ok ko = if b then ok else ko
32 instance Sym_If TextI where
33 if_ (TextI cond) (TextI ok) (TextI ko) =
35 let p' = Precedence 2 in
41 instance (Sym_If r1, Sym_If r2) => Sym_If (DupI r1 r2) where
42 if_ = dupI3 (Proxy @Sym_If) if_
45 ( Read_TypeNameR Text cs rs
46 ) => Read_TypeNameR Text cs (Proxy If ': rs) where
47 read_typenameR _rs = read_typenameR (Proxy @rs)
48 instance Show_Const cs => Show_Const (Proxy If ': cs) where
49 show_const ConstZ{} = "If"
50 show_const (ConstS c) = show_const c
52 instance Proj_ConC cs (Proxy If)
53 data instance TokenT meta (ts::[*]) (Proxy If)
54 = Token_Term_If_if (EToken meta ts) (EToken meta ts)
55 deriving instance Eq_Token meta ts => Eq (TokenT meta ts (Proxy If))
56 deriving instance Show_Token meta ts => Show (TokenT meta ts (Proxy If))
58 ( Inj_Const (Consts_of_Ifaces is) Bool
59 , Inj_Const (Consts_of_Ifaces is) (->)
61 ) => CompileI is (Proxy If) where
64 Token_Term_If_if tok_cond tok_ok ->
65 -- if :: Bool -> a -> a -> a
66 compileO tok_cond ctx $ \ty_cond (TermO cond) ->
67 compileO tok_ok ctx $ \ty_ok (TermO ok) ->
69 (At Nothing (ty @Bool))
70 (At (Just tok_cond) ty_cond) $ \Refl ->
71 k (ty_ok ~> ty_ok) $ TermO $
72 \c -> lam $ if_ (cond c) (ok c)