]> Git — Sourcephile - haskell/symantic.git/blob - Language/Symantic/Compiling/List.hs
Add Compiling.NonNull.
[haskell/symantic.git] / Language / Symantic / Compiling / List.hs
1 {-# LANGUAGE DataKinds #-}
2 {-# LANGUAGE DefaultSignatures #-}
3 {-# LANGUAGE FlexibleContexts #-}
4 {-# LANGUAGE FlexibleInstances #-}
5 {-# LANGUAGE InstanceSigs #-}
6 {-# LANGUAGE MultiParamTypeClasses #-}
7 {-# LANGUAGE OverloadedStrings #-}
8 {-# LANGUAGE Rank2Types #-}
9 {-# LANGUAGE ScopedTypeVariables #-}
10 {-# LANGUAGE TypeFamilies #-}
11 {-# LANGUAGE TypeOperators #-}
12 {-# LANGUAGE UndecidableInstances #-}
13 {-# OPTIONS_GHC -fno-warn-orphans #-}
14 {-# OPTIONS_GHC -fconstraint-solver-iterations=8 #-}
15 -- | Symantic for '[]'.
16 module Language.Symantic.Compiling.List where
17
18 import Control.Monad (liftM, liftM2, liftM3)
19 import qualified Data.Foldable as Foldable
20 import qualified Data.Function as Fun
21 import qualified Data.Functor as Functor
22 import qualified Data.List as List
23 import Data.Monoid ((<>))
24 import Data.Proxy
25 import Data.String (IsString)
26 import Data.Text (Text)
27 import qualified Data.Text as Text
28 import qualified Data.Traversable as Traversable
29 import Data.Type.Equality ((:~:)(Refl))
30 import Prelude hiding (filter, reverse, zipWith)
31
32 import Language.Symantic.Typing
33 import Language.Symantic.Compiling.Term
34 import Language.Symantic.Compiling.Bool (tyBool)
35 import Language.Symantic.Interpreting
36 import Language.Symantic.Transforming.Trans
37
38 -- * Class 'Sym_List'
39 class Sym_List term where
40 list_empty :: term [a]
41 list_cons :: term a -> term [a] -> term [a]
42 list :: [term a] -> term [a]
43 filter :: term (a -> Bool) -> term [a] -> term [a]
44 zipWith :: term (a -> b -> c) -> term [a] -> term [b] -> term [c]
45 reverse :: term [a] -> term [a]
46
47 default list_empty :: Trans t term => t term [a]
48 default list_cons :: Trans t term => t term a -> t term [a] -> t term [a]
49 default list :: Trans t term => [t term a] -> t term [a]
50 default filter :: Trans t term => t term (a -> Bool) -> t term [a] -> t term [a]
51 default zipWith :: Trans t term => t term (a -> b -> c) -> t term [a] -> t term [b] -> t term [c]
52 default reverse :: Trans t term => t term [a] -> t term [a]
53
54 list_empty = trans_lift list_empty
55 list_cons = trans_map2 list_cons
56 list l = trans_lift (list (trans_apply Functor.<$> l))
57 filter = trans_map2 filter
58 zipWith = trans_map3 zipWith
59 reverse = trans_map1 reverse
60
61 type instance Sym_of_Iface (Proxy []) = Sym_List
62 type instance Consts_of_Iface (Proxy []) = Proxy [] ': Consts_imported_by []
63 type instance Consts_imported_by [] =
64 [ Proxy Applicative
65 , Proxy Bool
66 , Proxy Eq
67 , Proxy Foldable
68 , Proxy Functor
69 , Proxy Monad
70 , Proxy Monoid
71 , Proxy Ord
72 , Proxy Traversable
73 ]
74
75 instance Sym_List HostI where
76 list_empty = return []
77 list_cons = liftM2 (:)
78 list = Traversable.sequence
79 filter = liftM2 List.filter
80 zipWith = liftM3 List.zipWith
81 reverse = liftM List.reverse
82 instance Sym_List TextI where
83 list_empty = TextI $ \_p _v -> "[]"
84 list_cons (TextI x) (TextI xs) =
85 TextI $ \p v ->
86 let p' = Precedence 5 in
87 paren p p' $ x p' v <> ":" <> xs p' v
88 list l = TextI $ \_p v ->
89 let p' = precedence_Toplevel in
90 "[" <> Text.intercalate ", " ((\(TextI a) -> a p' v) Functor.<$> l) <> "]"
91 filter = textI_app2 "filter"
92 zipWith = textI_app3 "zipWith"
93 reverse = textI_app1 "reverse"
94 instance (Sym_List r1, Sym_List r2) => Sym_List (DupI r1 r2) where
95 list_empty = dupI0 sym_List list_empty
96 list_cons = dupI2 sym_List list_cons
97 list l =
98 let (l1, l2) =
99 Foldable.foldr (\(x1 `DupI` x2) (xs1, xs2) ->
100 (x1:xs1, x2:xs2)) ([], []) l in
101 list l1 `DupI` list l2
102 filter = dupI2 sym_List filter
103 zipWith = dupI3 sym_List zipWith
104 reverse = dupI1 sym_List reverse
105
106 instance Const_from Text cs => Const_from Text (Proxy [] ': cs) where
107 const_from "[]" k = k (ConstZ kind)
108 const_from s k = const_from s $ k . ConstS
109 instance Show_Const cs => Show_Const (Proxy [] ': cs) where
110 show_const ConstZ{} = "[]"
111 show_const (ConstS c) = show_const c
112
113 instance -- Proj_ConC
114 ( Proj_Const cs []
115 , Proj_Consts cs (Consts_imported_by [])
116 , Proj_Con cs
117 ) => Proj_ConC cs (Proxy []) where
118 proj_conC _ (TyConst q :$ TyConst c)
119 | Just Refl <- eq_skind (kind_of_const c) (SKiType `SKiArrow` SKiType)
120 , Just Refl <- proj_const c (Proxy::Proxy [])
121 = case () of
122 _ | Just Refl <- proj_const q (Proxy::Proxy Applicative) -> Just Con
123 | Just Refl <- proj_const q (Proxy::Proxy Foldable) -> Just Con
124 | Just Refl <- proj_const q (Proxy::Proxy Functor) -> Just Con
125 | Just Refl <- proj_const q (Proxy::Proxy Monad) -> Just Con
126 | Just Refl <- proj_const q (Proxy::Proxy Traversable) -> Just Con
127 _ -> Nothing
128 proj_conC _ (t@(TyConst q) :$ (TyConst c :$ a))
129 | Just Refl <- eq_skind (kind_of_const c) (SKiType `SKiArrow` SKiType)
130 , Just Refl <- proj_const c (Proxy::Proxy [])
131 = case () of
132 _ | Just Refl <- proj_const q (Proxy::Proxy Eq)
133 , Just Con <- proj_con (t :$ a) -> Just Con
134 | Just Refl <- proj_const q (Proxy::Proxy Monoid) -> Just Con
135 | Just Refl <- proj_const q (Proxy::Proxy Ord)
136 , Just Con <- proj_con (t :$ a) -> Just Con
137 _ -> Nothing
138 proj_conC _c _q = Nothing
139 instance -- Term_fromI
140 ( AST ast
141 , Lexem ast ~ LamVarName
142 , Const_from (Lexem ast) (Consts_of_Ifaces is)
143 , Inj_Const (Consts_of_Ifaces is) []
144 , Inj_Const (Consts_of_Ifaces is) (->)
145 , Inj_Const (Consts_of_Ifaces is) Bool
146 , Term_from is ast
147 ) => Term_fromI is (Proxy []) ast where
148 term_fromI :: forall ctx ls rs ret. Term_fromIT ast ctx ret is ls (Proxy [] ': rs)
149 term_fromI ast ctx k =
150 case ast_lexem ast of
151 "[]" -> list_empty_from
152 ":" -> list_cons_from
153 "list" -> list_from
154 "filter" -> filter_from
155 "zipWith" -> zipWith_from
156 "reverse" -> reverse_from
157 _ -> Left $ Error_Term_unsupported
158 where
159 list_empty_from =
160 -- [] :: [a]
161 from_ast1 ast $ \ast_ty_a as ->
162 either (Left . Error_Term_Typing . At (Just ast)) Fun.id $
163 type_from ast_ty_a $ \ty_a -> Right $
164 check_kind ast SKiType (At (Just ast_ty_a) ty_a) $ \Refl ->
165 k as (tyList :$ ty_a) $ TermLC $
166 Fun.const list_empty
167 list_cons_from =
168 -- (:) :: a -> [a] -> [a]
169 from_ast1 ast $ \ast_a as ->
170 term_from ast_a ctx $ \ty_a (TermLC a) ->
171 k as (tyList :$ ty_a ~> tyList :$ ty_a) $ TermLC $
172 \c -> lam $ list_cons (a c)
173 list_from =
174 case ast_nodes ast of
175 [] -> Left $ Error_Term_Syntax $
176 Error_Syntax_more_arguments_needed $ At (Just ast) 1
177 ast_ty_a:ast_as ->
178 either (Left . Error_Term_Typing . At (Just ast)) Fun.id $
179 type_from ast_ty_a $ \ty_a -> Right $
180 check_kind ast SKiType (At (Just ast_ty_a) ty_a) $ \Refl ->
181 go ty_a [] ast_as
182 where
183 go :: Type (Consts_of_Ifaces is) ty_a
184 -> [TermLC ctx ty_a is '[] is]
185 -> [ast]
186 -> Either (Error_Term is ast) ret
187 go ty_a as [] =
188 k [] (tyList :$ ty_a) $ TermLC $
189 \c -> list $ (\(TermLC a) -> a c)
190 Functor.<$> List.reverse as
191 go ty_a as (ast_x:ast_xs) =
192 term_from ast_x ctx $ \ty_x x ->
193 check_type (At (Just ast) ty_a) (At (Just ast_x) ty_x) $ \Refl ->
194 go ty_a (x:as) ast_xs
195 filter_from =
196 -- filter :: (a -> Bool) -> [a] -> [a]
197 from_ast1 ast $ \ast_a2Bool as ->
198 term_from ast_a2Bool ctx $ \ty_a2Bool (TermLC a2Bool) ->
199 check_type2 tyFun ast_a2Bool ty_a2Bool $ \Refl ty_a2Bool_a ty_a2Bool_Bool ->
200 check_type (At Nothing tyBool) (At (Just ast_a2Bool) ty_a2Bool_Bool) $ \Refl ->
201 k as (tyList :$ ty_a2Bool_a ~> tyList :$ ty_a2Bool_a) $ TermLC $
202 \c -> lam $ filter (a2Bool c)
203 zipWith_from =
204 -- zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]
205 from_ast1 ast $ \ast_a2b2c as ->
206 term_from ast_a2b2c ctx $ \ty_a2b2c (TermLC a2b2c) ->
207 check_type2 tyFun ast_a2b2c ty_a2b2c $ \Refl ty_a2b2c_a ty_a2b2c_b2c ->
208 check_type2 tyFun ast_a2b2c ty_a2b2c_b2c $ \Refl ty_a2b2c_b2c_b ty_a2b2c_b2c_c ->
209 k as ( tyList :$ ty_a2b2c_a
210 ~> tyList :$ ty_a2b2c_b2c_b
211 ~> tyList :$ ty_a2b2c_b2c_c ) $ TermLC $
212 \c -> lam $ lam . zipWith (a2b2c c)
213 reverse_from =
214 -- reverse :: [a] -> [a]
215 from_ast1 ast $ \ast_la as ->
216 term_from ast_la ctx $ \ty_la (TermLC la) ->
217 check_type1 tyList ast_la ty_la $ \Refl _ty_la_a ->
218 k as ty_la $ TermLC $
219 \c -> reverse (la c)
220
221 -- | The '[]' 'Type'
222 tyList :: Inj_Const cs [] => Type cs []
223 tyList = TyConst inj_const
224
225 sym_List :: Proxy Sym_List
226 sym_List = Proxy
227
228 syList :: IsString a => [Syntax a] -> Syntax a
229 syList = Syntax "List"