1 {-# LANGUAGE UndecidableInstances #-}
2 {-# OPTIONS_GHC -fno-warn-orphans #-}
3 -- | Symantic for 'Semigroup'.
4 module Language.Symantic.Lib.Semigroup where
6 import Data.Semigroup (Semigroup)
7 import qualified Data.Semigroup as Semigroup
9 import Language.Symantic
10 import Language.Symantic.Lib.Function (a0, b1)
11 import Language.Symantic.Lib.Integral (tyIntegral)
13 -- * Class 'Sym_Semigroup'
14 type instance Sym Semigroup = Sym_Semigroup
15 class Sym_Semigroup term where
16 (<>) :: Semigroup a => term a -> term a -> term a
17 stimes :: (Semigroup a, Integral b) => term b -> term a -> term a
18 -- sconcat :: NonEmpty a -> a
19 default (<>) :: Sym_Semigroup (UnT term) => Trans term => Semigroup a => term a -> term a -> term a
20 default stimes :: Sym_Semigroup (UnT term) => Trans term => Semigroup a => Integral b => term b -> term a -> term a
22 stimes = trans2 stimes
25 instance Sym_Semigroup Eval where
26 (<>) = eval2 (Semigroup.<>)
27 stimes = eval2 Semigroup.stimes
28 instance Sym_Semigroup View where
29 (<>) = viewInfix "-" (infixR 6)
30 stimes = view2 "stimes"
31 instance (Sym_Semigroup r1, Sym_Semigroup r2) => Sym_Semigroup (Dup r1 r2) where
32 (<>) = dup2 @Sym_Semigroup (<>)
33 stimes = dup2 @Sym_Semigroup stimes
36 instance (Sym_Semigroup term, Sym_Lambda term) => Sym_Semigroup (BetaT term)
39 instance FixityOf Semigroup
40 instance ClassInstancesFor Semigroup
41 instance TypeInstancesFor Semigroup
44 instance Gram_Term_AtomsFor src ss g Semigroup
45 instance (Source src, Inj_Sym ss Semigroup) => ModuleFor src ss Semigroup where
46 moduleFor = ["Semigroup"] `moduleWhere`
47 [ "<>" `withInfixR` 6 := teSemigroup_sappend
48 , "stimes" := teSemigroup_stimes
52 tySemigroup :: Source src => Type src vs a -> Type src vs (Semigroup a)
53 tySemigroup a = tyConstLen @(K Semigroup) @Semigroup (lenVars a) `tyApp` a
56 teSemigroup_sappend :: TermDef Semigroup '[Proxy a] (Semigroup a #> (a -> a -> a))
57 teSemigroup_sappend = Term (tySemigroup a0) (a0 ~> a0 ~> a0) $ teSym @Semigroup $ lam2 (<>)
59 teSemigroup_stimes :: TermDef Semigroup '[Proxy a, Proxy b] (Semigroup a # Integral b #> (b -> a -> a))
60 teSemigroup_stimes = Term (tySemigroup a0 # tyIntegral b1) (b1 ~> a0 ~> a0) $ teSym @Semigroup $ lam2 stimes