1 {-# LANGUAGE DefaultSignatures #-}
2 {-# LANGUAGE DataKinds #-}
3 {-# LANGUAGE FlexibleContexts #-}
4 {-# LANGUAGE FlexibleInstances #-}
5 {-# LANGUAGE MultiParamTypeClasses #-}
6 {-# LANGUAGE OverloadedStrings #-}
7 {-# LANGUAGE Rank2Types #-}
8 {-# LANGUAGE ScopedTypeVariables #-}
9 {-# LANGUAGE TypeFamilies #-}
10 {-# LANGUAGE TypeOperators #-}
11 -- | Expression for /lambda abstraction/s
12 -- in /Higher-Order Abstract Syntax/ (HOAS).
13 module Language.Symantic.Expr.Lambda where
15 import qualified Control.Applicative as Applicative
16 import qualified Data.Function as Fun
18 import Data.Proxy (Proxy(..))
19 import Data.Type.Equality ((:~:)(Refl))
20 import Data.Text (Text)
21 import qualified Data.Text as Text
22 import Prelude hiding (const, id)
24 import Language.Symantic.Type
25 import Language.Symantic.Repr
26 import Language.Symantic.Expr.Root
27 import Language.Symantic.Expr.Error
28 import Language.Symantic.Expr.From
29 import Language.Symantic.Trans.Common
31 -- * Class 'Sym_Lambda'
33 class Sym_Lambda repr where
34 -- | /Lambda application/.
35 ($$) :: repr ((->) arg res) -> repr arg -> repr res
36 default ($$) :: Trans t repr
37 => t repr ((->) arg res) -> t repr arg -> t repr res
38 ($$) f x = trans_lift (trans_apply f $$ trans_apply x)
40 -- | /Lambda abstraction/.
41 lam :: (repr arg -> repr res) -> repr ((->) arg res)
42 default lam :: Trans t repr
43 => (t repr arg -> t repr res) -> t repr ((->) arg res)
44 lam f = trans_lift $ lam $ trans_apply . f . trans_lift
46 -- | Convenient 'lam' and '$$' wrapper.
47 let_ :: repr var -> (repr var -> repr res) -> repr res
50 id :: repr a -> repr a
51 id a = (lam Fun.id) $$ a
53 const :: repr a -> repr b -> repr a
54 const a b = lam (lam . Fun.const) $$ a $$ b
56 (#) :: repr (b -> c) -> repr (a -> b) -> repr a -> repr c
57 (#) f g a = f $$ (g $$ a)
59 flip :: repr (a -> b -> c) -> repr b -> repr a -> repr c
60 flip f b a = f $$ a $$ b
63 instance Sym_Lambda Repr_Host where
64 ($$) = (Applicative.<*>)
65 lam f = Repr_Host (unRepr_Host . f . Repr_Host)
66 instance Sym_Lambda Repr_Text where
67 ($$) (Repr_Text a1) (Repr_Text a2) =
69 let p' = precedence_App in
70 paren p p' $ a1 p' v <> " " <> a2 p' v
73 let p' = precedence_Lambda in
74 let x = "x" <> Text.pack (show v) in
76 "\\" <> x <> " -> " <>
77 unRepr_Text (f (Repr_Text $ \_p _v -> x)) p' (succ v)
80 let p' = precedence_Let in
81 let x = "x" <> Text.pack (show v) in
83 "let" <> " " <> x <> " = " <> unRepr_Text e p (succ v) <> " in " <>
84 unRepr_Text (in_ (Repr_Text $ \_p _v -> x)) p (succ v)
88 ) => Sym_Lambda (Dup r1 r2) where
89 ($$) (f1 `Dup` f2) (x1 `Dup` x2) = ($$) f1 x1 `Dup` ($$) f2 x2
90 lam f = dup1 (lam f) `Dup` dup2 (lam f)
92 -- * Type 'Expr_Lambda'
94 data Expr_Lambda (root:: *)
95 type instance Root_of_Expr (Expr_Lambda root) = root
96 type instance Type_of_Expr (Expr_Lambda root) = Type_Fun
97 type instance Sym_of_Expr (Expr_Lambda root) repr = Sym_Lambda repr
98 type instance Error_of_Expr ast (Expr_Lambda root) = Error_Expr_Lambda ast
100 -- | Parsing utility to check that the given type is a 'Type_Fun'
101 -- or raise 'Error_Expr_Type_mismatch'.
103 :: forall ast ex root ty h ret.
104 ( root ~ Root_of_Expr ex
105 , ty ~ Type_Root_of_Expr ex
106 , Lift_Type Type_Fun (Type_of_Expr root)
107 , Unlift_Type Type_Fun (Type_of_Expr root)
108 , Lift_Error_Expr (Error_Expr (Error_of_Type ast ty) ty ast)
109 (Error_of_Expr ast root)
111 => Proxy ex -> ast -> ty h
112 -> (Type_Fun ty h -> Either (Error_of_Expr ast root) ret)
113 -> Either (Error_of_Expr ast root) ret
114 check_type_fun ex ast ty k =
115 case unlift_type $ unType_Root ty of
119 Error_Expr_Type_mismatch ast
120 (Exists_Type (type_var0 SZero `type_fun` type_var0 (SSucc SZero)
121 :: ty ((->) Var0 Var0)))
124 -- | Parse a /lambda variable/.
126 :: forall ast root hs ret.
127 ( Type_from ast (Type_Root_of_Expr root)
128 , Lift_Error_Expr (Error_Expr_Lambda ast)
129 (Error_of_Expr ast root)
130 , Root_of_Expr root ~ root
131 ) => Text -> Expr_From ast (Expr_Lambda root) hs ret
132 var_from name _ex ast = go
134 go :: forall ex hs'. (ex ~ (Expr_Lambda root))
135 => Context (Lambda_Var (Type_Root_of_Expr ex)) hs'
136 -> ( forall h. Type_Root_of_Expr ex h
137 -> Forall_Repr_with_Context ex hs' h
138 -> Either (Error_of_Expr ast (Root_of_Expr ex)) ret )
139 -> Either (Error_of_Expr ast (Root_of_Expr ex)) ret
142 Context_Empty -> Left $ lift_error_expr $
143 Error_Expr_Lambda_Var_unbound name ast
144 Lambda_Var n ty `Context_Next` _ | n == name ->
145 k' ty $ Forall_Repr_with_Context $
146 \(repr `Context_Next` _) -> repr
147 _ `Context_Next` ctx' ->
148 go ctx' $ \ty (Forall_Repr_with_Context repr) ->
149 k' ty $ Forall_Repr_with_Context $
150 \(_ `Context_Next` c') -> repr c'
154 :: forall ty ast root hs ret.
155 ( ty ~ Type_Root_of_Expr root
159 , Lift_Type Type_Fun (Type_of_Expr root)
160 , Lift_Error_Expr (Error_Expr (Error_of_Type ast ty) ty ast)
161 (Error_of_Expr ast root)
162 , Unlift_Type Type_Fun (Type_of_Expr root)
163 , Root_of_Expr root ~ root
165 -> Expr_From ast (Expr_Lambda root) hs ret
166 app_from ast_lam ast_arg_actual ex ast ctx k =
167 expr_from (Proxy::Proxy root) ast_lam ctx $
168 \(ty_lam::ty h_lam) (Forall_Repr_with_Context l) ->
169 expr_from (Proxy::Proxy root) ast_arg_actual ctx $
170 \(ty_arg_actual::ty h_arg_actual)
171 (Forall_Repr_with_Context arg_actual) ->
172 case unlift_type $ unType_Root ty_lam of
175 Error_Expr_Type_mismatch ast
176 (Exists_Type (type_var0 SZero `type_fun` type_var0 (SSucc SZero)
177 :: ty ((->) Var0 Var0)))
179 Just (Type_Type2 Proxy ty_arg_expected ty_res
180 :: Type_Fun ty h_lam) ->
182 ty_arg_expected ty_arg_actual $ \Refl ->
183 k ty_res $ Forall_Repr_with_Context $
184 \c -> l c $$ arg_actual c
186 -- | Parse given /lambda abstraction/.
188 :: forall ty ast root hs ret.
189 ( ty ~ Type_Root_of_Expr root
190 , root ~ Root_of_Expr root
193 , Lift_Type Type_Fun (Type_of_Expr root)
194 , Lift_Error_Expr (Error_Expr (Error_of_Type ast ty) ty ast)
195 (Error_of_Expr ast root)
196 ) => Text -> ast -> ast
197 -> Expr_From ast (Expr_Lambda root) hs ret
198 lam_from name ast_ty_arg ast_body ex ast ctx k =
201 ast_ty_arg (Right . Exists_Type) of
202 Left err -> Left $ error_expr ex $ Error_Expr_Type err ast
203 Right (Exists_Type (ty_arg::ty h_arg)) ->
204 expr_from (Proxy::Proxy root) ast_body
205 (Lambda_Var name ty_arg `Context_Next` ctx) $
206 \(ty_res::ty h_res) (Forall_Repr_with_Context res) ->
207 k (ty_arg `type_fun` ty_res
208 :: Root_of_Type ty ((->) h_arg h_res)) $
209 Forall_Repr_with_Context $
211 \arg -> res (arg `Context_Next` c)
213 -- | Parse given /let/.
215 :: forall ty ast root hs ret.
216 ( ty ~ Type_Root_of_Expr root
217 , root ~ Root_of_Expr root
220 , Lift_Error_Expr (Error_Expr (Error_of_Type ast ty) ty ast)
221 (Error_of_Expr ast root)
222 ) => Text -> ast -> ast
223 -> Expr_From ast (Expr_Lambda root) hs ret
224 let_from name ast_var ast_body _ex _ast ctx k =
225 expr_from (Proxy::Proxy root) ast_var ctx $
226 \(ty_var::ty h_var) (Forall_Repr_with_Context var) ->
227 expr_from (Proxy::Proxy root) ast_body
228 (Lambda_Var name ty_var `Context_Next` ctx) $
229 \(ty_res::ty h_res) (Forall_Repr_with_Context res) ->
230 k ty_res $ Forall_Repr_with_Context $
232 \arg -> res (arg `Context_Next` c)
234 -- * Type 'Error_Expr_Lambda'
235 data Error_Expr_Lambda ast
236 = Error_Expr_Lambda_Var_unbound Lambda_Var_Name ast