1 {-# LANGUAGE FlexibleContexts #-}
2 {-# LANGUAGE FlexibleInstances #-}
3 {-# LANGUAGE MultiParamTypeClasses #-}
4 {-# LANGUAGE NoImplicitPrelude #-}
5 {-# LANGUAGE TypeFamilies #-}
6 {-# LANGUAGE UndecidableInstances #-}
7 -- | Interpreter to duplicate the representation of an expression
8 -- in order to evaluate it with different interpreters.
10 -- NOTE: this is a more verbose, less clear,
11 -- and maybe less efficient alternative
12 -- to maintaining the universal polymorphism of @repr@ at parsing time
13 -- as done with 'Forall_Repr_with_Context';
14 -- it is mainly here for the sake of curiosity.
15 module Language.Symantic.Repr.Dup where
17 import Data.Foldable (foldr)
19 import Language.Symantic.Expr
21 -- | Interpreter's data.
22 data Dup repr1 repr2 a
31 ) => Sym_Bool (Dup r1 r2) where
32 bool x = bool x `Dup` bool x
33 not (x1 `Dup` x2) = not x1 `Dup` not x2
34 (&&) (x1 `Dup` x2) (y1 `Dup` y2) = (&&) x1 y1 `Dup` (&&) x2 y2
35 (||) (x1 `Dup` x2) (y1 `Dup` y2) = (||) x1 y1 `Dup` (||) x2 y2
36 xor (x1 `Dup` x2) (y1 `Dup` y2) = xor x1 y1 `Dup` xor x2 y2
40 ) => Sym_Int (Dup r1 r2) where
41 int x = int x `Dup` int x
42 abs (x1 `Dup` x2) = abs x1 `Dup` abs x2
43 negate (x1 `Dup` x2) = negate x1 `Dup` negate x2
44 (+) (x1 `Dup` x2) (y1 `Dup` y2) = (+) x1 y1 `Dup` (+) x2 y2
45 (-) (x1 `Dup` x2) (y1 `Dup` y2) = (-) x1 y1 `Dup` (-) x2 y2
46 (*) (x1 `Dup` x2) (y1 `Dup` y2) = (*) x1 y1 `Dup` (*) x2 y2
47 mod (x1 `Dup` x2) (y1 `Dup` y2) = mod x1 y1 `Dup` mod x2 y2
51 ) => Sym_Eq (Dup r1 r2) where
52 (==) (x1 `Dup` x2) (y1 `Dup` y2) = (==) x1 y1 `Dup` (==) x2 y2
56 ) => Sym_Ord (Dup r1 r2) where
57 compare (x1 `Dup` x2) (y1 `Dup` y2) =
58 compare x1 y1 `Dup` compare x2 y2
62 ) => Sym_If (Dup r1 r2) where
63 if_ (c1 `Dup` c2) (ok1 `Dup` ok2) (ko1 `Dup` ko2) =
64 if_ c1 ok1 ko1 `Dup` if_ c2 ok2 ko2
68 ) => Sym_When (Dup r1 r2) where
69 when (c1 `Dup` c2) (ok1 `Dup` ok2) =
70 when c1 ok1 `Dup` when c2 ok2
74 ) => Sym_List (Dup r1 r2) where
75 list_empty = list_empty `Dup` list_empty
76 list_cons (a1 `Dup` a2) (l1 `Dup` l2) = list_cons a1 l1 `Dup` list_cons a2 l2
79 foldr (\(x1 `Dup` x2) (xs1, xs2) ->
80 (x1:xs1, x2:xs2)) ([], []) l in
82 list_filter (f1 `Dup` f2) (l1 `Dup` l2) =
83 list_filter f1 l1 `Dup` list_filter f2 l2
84 list_zipWith (f1 `Dup` f2) (la1 `Dup` la2) (lb1 `Dup` lb2) =
85 list_zipWith f1 la1 lb1 `Dup` list_zipWith f2 la2 lb2
86 list_reverse (l1 `Dup` l2) =
87 list_reverse l1 `Dup` list_reverse l2
91 ) => Sym_Maybe (Dup r1 r2) where
92 nothing = nothing `Dup` nothing
93 just (a1 `Dup` a2) = just a1 `Dup` just a2
94 maybe (m1 `Dup` m2) (n1 `Dup` n2) (j1 `Dup` j2) =
97 instance -- Sym_Lambda
100 ) => Sym_Lambda (Dup r1 r2) where
101 ($$) (f1 `Dup` f2) (x1 `Dup` x2) = ($$) f1 x1 `Dup` ($$) f2 x2
102 lam f = dup1 (lam f) `Dup` dup2 (lam f)
103 instance -- Sym_Tuple2
106 ) => Sym_Tuple2 (Dup r1 r2) where
107 tuple2 (a1 `Dup` a2) (b1 `Dup` b2) =
108 tuple2 a1 b1 `Dup` tuple2 a2 b2
109 fst (t1 `Dup` t2) = fst t1 `Dup` fst t2
110 snd (t1 `Dup` t2) = snd t1 `Dup` snd t2
114 ) => Sym_Map (Dup r1 r2) where
115 map_from_list (l1 `Dup` l2) =
116 map_from_list l1 `Dup` map_from_list l2
117 mapWithKey (f1 `Dup` f2) (m1 `Dup` m2) =
118 mapWithKey f1 m1 `Dup` mapWithKey f2 m2
119 map_lookup (k1 `Dup` k2) (m1 `Dup` m2) =
120 map_lookup k1 m1 `Dup` map_lookup k2 m2
121 map_keys (m1 `Dup` m2) =
122 map_keys m1 `Dup` map_keys m2
123 map_member (k1 `Dup` k2) (m1 `Dup` m2) =
124 map_member k1 m1 `Dup` map_member k2 m2
125 map_insert (k1 `Dup` k2) (a1 `Dup` a2) (m1 `Dup` m2) =
126 map_insert k1 a1 m1 `Dup` map_insert k2 a2 m2
127 map_delete (k1 `Dup` k2) (m1 `Dup` m2) =
128 map_delete k1 m1 `Dup` map_delete k2 m2
129 map_difference (ma1 `Dup` ma2) (mb1 `Dup` mb2) =
130 map_difference ma1 mb1 `Dup` map_difference ma2 mb2
131 map_foldrWithKey (f1 `Dup` f2) (b1 `Dup` b2) (m1 `Dup` m2) =
132 map_foldrWithKey f1 b1 m1 `Dup` map_foldrWithKey f2 b2 m2
133 instance -- Sym_Functor
136 ) => Sym_Functor (Dup r1 r2) where
137 fmap (f1 `Dup` f2) (m1 `Dup` m2) =
138 fmap f1 m1 `Dup` fmap f2 m2
139 instance -- Sym_Applicative
142 ) => Sym_Applicative (Dup r1 r2) where
144 pure a1 `Dup` pure a2
145 (<*>) (f1 `Dup` f2) (m1 `Dup` m2) =
146 (<*>) f1 m1 `Dup` (<*>) f2 m2
147 instance -- Sym_Traversable
150 ) => Sym_Traversable (Dup r1 r2) where
151 traverse (f1 `Dup` f2) (m1 `Dup` m2) =
152 traverse f1 m1 `Dup` traverse f2 m2
153 instance -- Sym_Monad
156 ) => Sym_Monad (Dup r1 r2) where
157 return (a1 `Dup` a2) =
158 return a1 `Dup` return a2
159 (>>=) (m1 `Dup` m2) (f1 `Dup` f2) =
160 (>>=) m1 f1 `Dup` (>>=) m2 f2