1 {-# LANGUAGE DefaultSignatures #-}
2 {-# LANGUAGE FlexibleContexts #-}
3 {-# LANGUAGE FlexibleInstances #-}
4 {-# LANGUAGE MultiParamTypeClasses #-}
5 {-# LANGUAGE OverloadedStrings #-}
6 {-# LANGUAGE ScopedTypeVariables #-}
7 {-# LANGUAGE TypeFamilies #-}
8 {-# LANGUAGE TypeOperators #-}
9 {-# OPTIONS_GHC -fno-warn-orphans #-}
10 -- | Expression for 'List'.
11 module Language.Symantic.Expr.List where
14 import qualified Data.Function as Fun
15 import qualified Data.List as List
17 import Data.Proxy (Proxy(..))
18 import qualified Data.Text as Text
19 import Data.Type.Equality ((:~:)(Refl))
21 import Language.Symantic.Type
22 import Language.Symantic.Repr
23 import Language.Symantic.Expr.Root
24 import Language.Symantic.Expr.Error
25 import Language.Symantic.Expr.From
26 import Language.Symantic.Expr.Lambda
27 import Language.Symantic.Trans.Common
29 -- * Class 'Sym_List_Lam'
31 class Sym_List repr where
32 list_empty :: repr [a]
33 list_cons :: repr a -> repr [a] -> repr [a]
34 list :: [repr a] -> repr [a]
35 list_filter :: repr (a -> Bool) -> repr [a] -> repr [a]
36 list_zipWith :: repr (a -> b -> c) -> repr [a] -> repr [b] -> repr [c]
37 list_reverse :: repr [a] -> repr [a]
39 default list_empty :: Trans t repr => t repr [a]
40 default list_cons :: Trans t repr => t repr a -> t repr [a] -> t repr [a]
41 default list :: Trans t repr => [t repr a] -> t repr [a]
42 default list_filter :: Trans t repr => t repr (a -> Bool) -> t repr [a] -> t repr [a]
43 default list_zipWith :: Trans t repr => t repr (a -> b -> c) -> t repr [a] -> t repr [b] -> t repr [c]
44 default list_reverse :: Trans t repr => t repr [a] -> t repr [a]
46 list_empty = trans_lift list_empty
47 list_cons = trans_map2 list_cons
48 list l = trans_lift (list (trans_apply Prelude.<$> l))
49 list_filter = trans_map2 list_filter
50 list_zipWith = trans_map3 list_zipWith
51 list_reverse = trans_map1 list_reverse
52 instance Sym_List Repr_Host where
53 list_empty = return []
54 list_cons = liftM2 (:)
56 list_filter = liftM2 List.filter
57 list_zipWith = liftM3 List.zipWith
58 list_reverse = liftM List.reverse
59 instance Sym_List Repr_Text where
60 list_empty = Repr_Text $ \_p _v -> "[]"
61 list_cons (Repr_Text x) (Repr_Text xs) =
63 let p' = Precedence 5 in
64 paren p p' $ x p' v <> ":" <> xs p' v
65 list l = Repr_Text $ \_p v ->
66 let p' = precedence_Toplevel in
67 "[" <> Text.intercalate ", " ((\(Repr_Text a) -> a p' v) Prelude.<$> l) <> "]"
68 list_filter = repr_text_app2 "list_filter"
69 list_zipWith = repr_text_app3 "list_zipWith"
70 list_reverse = repr_text_app1 "list_reverse"
71 instance (Sym_List r1, Sym_List r2) => Sym_List (Repr_Dup r1 r2) where
72 list_empty = list_empty `Repr_Dup` list_empty
73 list_cons (a1 `Repr_Dup` a2) (l1 `Repr_Dup` l2) = list_cons a1 l1 `Repr_Dup` list_cons a2 l2
76 foldr (\(x1 `Repr_Dup` x2) (xs1, xs2) ->
77 (x1:xs1, x2:xs2)) ([], []) l in
78 list l1 `Repr_Dup` list l2
79 list_filter (f1 `Repr_Dup` f2) (l1 `Repr_Dup` l2) =
80 list_filter f1 l1 `Repr_Dup` list_filter f2 l2
81 list_zipWith (f1 `Repr_Dup` f2) (la1 `Repr_Dup` la2) (lb1 `Repr_Dup` lb2) =
82 list_zipWith f1 la1 lb1 `Repr_Dup` list_zipWith f2 la2 lb2
83 list_reverse (l1 `Repr_Dup` l2) =
84 list_reverse l1 `Repr_Dup` list_reverse l2
88 data Expr_List (root:: *)
89 type instance Root_of_Expr (Expr_List root) = root
90 type instance Type_of_Expr (Expr_List root) = Type_List
91 type instance Sym_of_Expr (Expr_List root) repr = (Sym_List repr)
92 type instance Error_of_Expr ast (Expr_List root) = No_Error_Expr
94 -- | Parsing utility to check that the given type is a 'Type_List'
95 -- or raise 'Error_Expr_Type_mismatch'.
97 :: forall ast ex root ty h ret.
98 ( root ~ Root_of_Expr ex
99 , ty ~ Type_Root_of_Expr ex
100 , Type0_Lift Type_List (Type_of_Expr root)
101 , Type0_Unlift Type_List (Type_of_Expr root)
102 , Error_Expr_Lift (Error_Expr (Error_of_Type ast ty) ty ast)
103 (Error_of_Expr ast root)
105 => Proxy ex -> ast -> ty h
106 -> (Type_List ty h -> Either (Error_of_Expr ast root) ret)
107 -> Either (Error_of_Expr ast root) ret
108 check_type_list ex ast ty k =
109 case type0_unlift $ unType_Root ty of
113 Error_Expr_Type_mismatch ast
114 (Exists_Type0 (type_list $ type_var0 SZero
118 -- | Parse 'list_empty'.
120 :: forall root ty ast hs ret.
121 ( ty ~ Type_Root_of_Expr (Expr_List root)
123 , Type0_Lift Type_List (Type_of_Expr root)
124 , Error_Expr_Lift (Error_Expr (Error_of_Type ast ty) ty ast)
125 (Error_of_Expr ast root)
126 , Root_of_Expr root ~ root
128 -> ExprFrom ast (Expr_List root) hs ret
129 list_empty_from ast_ty_a ex ast _ctx k =
130 either (\err -> Left $ error_expr ex $ Error_Expr_Type err ast) Fun.id $
131 type0_from (Proxy::Proxy ty) ast_ty_a $ \ty_a -> Right $
132 k (type_list ty_a) $ Forall_Repr_with_Context $
135 -- | Parse 'list_cons'.
137 :: forall root ty ast hs ret.
138 ( ty ~ Type_Root_of_Expr (Expr_List root)
141 , Type0_Lift Type_List (Type_of_Expr root)
142 , Type0_Unlift Type_List (Type_of_Expr root)
143 , Error_Expr_Lift (Error_Expr (Error_of_Type ast ty) ty ast)
144 (Error_of_Expr ast root)
145 , Root_of_Expr root ~ root
147 -> ExprFrom ast (Expr_List root) hs ret
148 list_cons_from ast_a ast_l ex ast ctx k =
149 expr_from (Proxy::Proxy root) ast_a ctx $
150 \(ty_a::ty h_a) (Forall_Repr_with_Context a) ->
151 expr_from (Proxy::Proxy root) ast_l ctx $
152 \(ty_l::ty h_l) (Forall_Repr_with_Context l) ->
153 check_type_list ex ast ty_l $ \(Type1 _ ty_l_a) ->
154 check_type0_eq ex ast ty_a ty_l_a $ \Refl ->
155 k (type_list ty_a) $ Forall_Repr_with_Context $
156 \c -> list_cons (a c) (l c)
160 :: forall root ex ty ast hs ret.
161 ( ty ~ Type_Root_of_Expr (Expr_List root)
162 , ex ~ Expr_List root
166 , Type0_Lift Type_List (Type_of_Expr root)
167 , Type0_Unlift Type_List (Type_of_Expr root)
168 , Error_Expr_Lift (Error_Expr (Error_of_Type ast ty) ty ast)
169 (Error_of_Expr ast root)
170 , Root_of_Expr root ~ root
172 -> ExprFrom ast ex hs ret
173 list_from ast_ty_a ast_as =
174 case type0_from (Proxy::Proxy ty)
175 ast_ty_a (Right . Exists_Type0) of
176 Left err -> \ex ast _ctx _k -> Left $ error_expr ex $ Error_Expr_Type err ast
177 Right (Exists_Type0 ty_a) -> go ty_a [] ast_as
180 -> [Forall_Repr_with_Context root hs ty_a]
182 -> ExprFrom ast (Expr_List root) hs ret
183 go ty_a as [] _ex _ast _ctx k =
184 k (type_list ty_a) $ Forall_Repr_with_Context $
185 \c -> list ((\(Forall_Repr_with_Context a) -> a c) Prelude.<$> reverse as)
186 go ty_a as (ast_x:ast_xs) ex ast ctx k =
187 expr_from (Proxy::Proxy root) ast_x ctx $
189 check_type0_eq ex ast ty_a ty_x $ \Refl ->
190 go ty_a (x:as) ast_xs ex ast ctx k
192 -- | Parse 'list_filter'.
194 :: forall root ty ast hs ret.
195 ( ty ~ Type_Root_of_Expr (Expr_List root)
198 , Type0_Lift Type_Bool (Type_of_Expr root)
199 , Type0_Lift Type_Fun (Type_of_Expr root)
200 , Type0_Unlift Type_Fun (Type_of_Expr root)
201 , Type0_Lift Type_List (Type_of_Expr root)
202 , Type0_Unlift Type_List (Type_of_Expr root)
203 , Error_Expr_Lift (Error_Expr (Error_of_Type ast ty) ty ast)
204 (Error_of_Expr ast root)
205 , Root_of_Expr root ~ root
207 -> ExprFrom ast (Expr_List root) hs ret
208 list_filter_from ast_f ast_l ex ast ctx k =
209 expr_from (Proxy::Proxy root) ast_f ctx $
210 \(ty_f::ty h_f) (Forall_Repr_with_Context f) ->
211 expr_from (Proxy::Proxy root) ast_l ctx $
212 \(ty_l::ty h_l) (Forall_Repr_with_Context l) ->
213 check_type_fun ex ast ty_f $ \(Type2 Proxy ty_f_a ty_f_b) ->
214 check_type0_eq ex ast type_bool ty_f_b $ \Refl ->
215 check_type_list ex ast ty_l $ \(Type1 _ ty_l_a) ->
216 check_type0_eq ex ast ty_f_a ty_l_a $ \Refl ->
217 k ty_l $ Forall_Repr_with_Context $
218 \c -> list_filter (f c) (l c)
220 -- | Parse 'list_zipWith'.
222 :: forall root ty ast hs ret.
223 ( ty ~ Type_Root_of_Expr (Expr_List root)
226 , Type0_Lift Type_Fun (Type_of_Expr root)
227 , Type0_Unlift Type_Fun (Type_of_Expr root)
228 , Type0_Lift Type_List (Type_of_Expr root)
229 , Type0_Unlift Type_List (Type_of_Expr root)
230 , Error_Expr_Lift (Error_Expr (Error_of_Type ast ty) ty ast)
231 (Error_of_Expr ast root)
232 , Root_of_Expr root ~ root
233 ) => ast -> ast -> ast
234 -> ExprFrom ast (Expr_List root) hs ret
235 list_zipWith_from ast_f ast_la ast_lb ex ast ctx k =
236 -- zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]
237 expr_from (Proxy::Proxy root) ast_f ctx $
238 \(ty_f::ty h_f) (Forall_Repr_with_Context f) ->
239 expr_from (Proxy::Proxy root) ast_la ctx $
240 \(ty_la::ty h_la) (Forall_Repr_with_Context la) ->
241 expr_from (Proxy::Proxy root) ast_lb ctx $
242 \(ty_lb::ty h_lb) (Forall_Repr_with_Context lb) ->
243 check_type_fun ex ast ty_f $ \(Type2 Proxy ty_f_a ty_f_b2c) ->
244 check_type_fun ex ast ty_f_b2c $ \(Type2 Proxy ty_f_b ty_f_c) ->
245 check_type_list ex ast ty_la $ \(Type1 _ ty_l_a) ->
246 check_type_list ex ast ty_lb $ \(Type1 _ ty_l_b) ->
247 check_type0_eq ex ast ty_f_a ty_l_a $ \Refl ->
248 check_type0_eq ex ast ty_f_b ty_l_b $ \Refl ->
249 check_type0_eq ex ast ty_f_a ty_l_a $ \Refl ->
250 k (type_list ty_f_c) $ Forall_Repr_with_Context $
251 \c -> list_zipWith (f c) (la c) (lb c)
253 -- | Parse 'list_reverse'.
255 :: forall root ty ast hs ret.
256 ( ty ~ Type_Root_of_Expr (Expr_List root)
259 , Type0_Lift Type_List (Type_of_Expr root)
260 , Type0_Unlift Type_List (Type_of_Expr root)
261 , Error_Expr_Lift (Error_Expr (Error_of_Type ast ty) ty ast)
262 (Error_of_Expr ast root)
263 , Root_of_Expr root ~ root
265 -> ExprFrom ast (Expr_List root) hs ret
266 list_reverse_from ast_l ex ast ctx k =
267 expr_from (Proxy::Proxy root) ast_l ctx $
268 \(ty_l::ty h_l) (Forall_Repr_with_Context l) ->
269 check_type_list ex ast ty_l $ \(Type1 _ _ty_l_a) ->
270 k ty_l $ Forall_Repr_with_Context $
271 \c -> list_reverse (l c)