]> Git — Sourcephile - haskell/symantic-base.git/blob - src/Symantic/Syntaxes/Classes.hs
iface: add semantic `Identity`
[haskell/symantic-base.git] / src / Symantic / Syntaxes / Classes.hs
1 -- For ifSemantic
2 {-# LANGUAGE AllowAmbiguousTypes #-}
3 -- For Syntax
4 {-# LANGUAGE DataKinds #-}
5 -- For (:!:)
6 {-# LANGUAGE PatternSynonyms #-}
7 -- For ifSemantic
8 {-# LANGUAGE RankNTypes #-}
9 -- For Permutation
10 {-# LANGUAGE TypeFamilyDependencies #-}
11 -- For Permutation
12 {-# LANGUAGE UndecidableInstances #-}
13
14 -- | This module gathers commonly used tagless-final combinators
15 -- (the syntax part of symantics).
16 --
17 -- Note: combinators in this module conflict with usual ones from the @Prelude@
18 -- hence they are meant to be imported either explicitely or qualified.
19 module Symantic.Syntaxes.Classes where
20
21 import Control.Category qualified as Cat
22 import Data.Bool (Bool (..))
23 import Data.Char (Char)
24 import Data.Either (Either (..))
25 import Data.Eq (Eq)
26 import Data.Function qualified as Fun
27 import Data.Int (Int)
28 import Data.Kind (Constraint)
29 import Data.Maybe (Maybe (..), fromJust)
30 import Data.Proxy (Proxy (..))
31 import Data.Semigroup (Semigroup)
32 import Data.String (String)
33 import Data.Tuple qualified as Tuple
34 import GHC.Generics (Generic)
35 import Numeric.Natural (Natural)
36
37 import Symantic.Syntaxes.CurryN
38 import Symantic.Syntaxes.Derive
39 import Symantic.Syntaxes.EithersOfTuples
40
41 -- * Type 'Syntax'
42 type Syntax = Semantic -> Constraint
43
44 -- ** Type family 'Syntaxes'
45
46 -- | Merge several 'Syntax'es into a single one.
47 --
48 -- Useful in 'IfSemantic' or 'All'.
49 type family Syntaxes (syns :: [Syntax]) (sem :: Semantic) :: Constraint where
50 Syntaxes '[] sem = (() :: Constraint)
51 Syntaxes (syn ': syns) sem = ((syn sem, Syntaxes syns sem) :: Constraint)
52
53 -- * Class 'Abstractable'
54 class Abstractable sem where
55 -- | Lambda term abstraction, in HOAS (Higher-Order Abstract Syntax) style.
56 lam :: (sem a -> sem b) -> sem (a -> b)
57 lam f = liftDerived (lam (derive Fun.. f Fun.. liftDerived))
58 default lam ::
59 FromDerived Abstractable sem =>
60 Derivable sem =>
61 (sem a -> sem b) ->
62 sem (a -> b)
63
64 -- ** Class 'Abstractable1'
65 class Abstractable1 sem where
66 -- | Like 'lam' but whose argument must be used only once,
67 -- hence safe to beta-reduce (inline) without duplicating work.
68 lam1 :: (sem a -> sem b) -> sem (a -> b)
69 lam1 f = liftDerived (lam1 (derive Fun.. f Fun.. liftDerived))
70 default lam1 ::
71 FromDerived Abstractable1 sem =>
72 Derivable sem =>
73 (sem a -> sem b) ->
74 sem (a -> b)
75
76 -- ** Class 'Varable'
77 class Varable sem where
78 -- | Mark the use of a variable.
79 var :: sem a -> sem a
80 var = liftDerived1 var
81 default var :: FromDerived1 Varable sem => sem a -> sem a
82
83 -- ** Class 'Unabstractable'
84 class Unabstractable sem where
85 -- | Application, aka. unabstract.
86 (.@) :: sem (a -> b) -> sem a -> sem b
87
88 infixl 9 .@
89 (.@) = liftDerived2 (.@)
90 default (.@) ::
91 FromDerived2 Unabstractable sem =>
92 sem (a -> b) ->
93 sem a ->
94 sem b
95
96 -- ** Class 'Functionable'
97 class Functionable sem where
98 const :: sem (a -> b -> a)
99 flip :: sem ((a -> b -> c) -> b -> a -> c)
100 id :: sem (a -> a)
101 (.) :: sem ((b -> c) -> (a -> b) -> a -> c)
102 infixr 9 .
103 ($) :: sem ((a -> b) -> a -> b)
104 infixr 0 $
105 const = liftDerived const
106 flip = liftDerived flip
107 id = liftDerived id
108 (.) = liftDerived (.)
109 ($) = liftDerived ($)
110 default const ::
111 FromDerived Functionable sem =>
112 sem (a -> b -> a)
113 default flip ::
114 FromDerived Functionable sem =>
115 sem ((a -> b -> c) -> b -> a -> c)
116 default id ::
117 FromDerived Functionable sem =>
118 sem (a -> a)
119 default (.) ::
120 FromDerived Functionable sem =>
121 sem ((b -> c) -> (a -> b) -> a -> c)
122 default ($) ::
123 FromDerived Functionable sem =>
124 sem ((a -> b) -> a -> b)
125
126 -- * Class 'Anythingable'
127 class Anythingable sem where
128 anything :: sem a -> sem a
129 anything = Fun.id
130
131 -- * Class 'Bottomable'
132 class Bottomable sem where
133 bottom :: sem a
134
135 -- * Class 'Constantable'
136 class Constantable c sem where
137 constant :: c -> sem c
138 constant = liftDerived Fun.. constant
139 default constant ::
140 FromDerived (Constantable c) sem =>
141 c ->
142 sem c
143
144 -- * Class 'Eitherable'
145 class Eitherable sem where
146 either :: sem ((l -> a) -> (r -> a) -> Either l r -> a)
147 left :: sem (l -> Either l r)
148 right :: sem (r -> Either l r)
149 either = liftDerived either
150 left = liftDerived left
151 right = liftDerived right
152 default either ::
153 FromDerived Eitherable sem =>
154 sem ((l -> a) -> (r -> a) -> Either l r -> a)
155 default left ::
156 FromDerived Eitherable sem =>
157 sem (l -> Either l r)
158 default right ::
159 FromDerived Eitherable sem =>
160 sem (r -> Either l r)
161
162 -- * Class 'Equalable'
163 class Equalable sem where
164 equal :: Eq a => sem (a -> a -> Bool)
165 equal = liftDerived equal
166 default equal ::
167 FromDerived Equalable sem =>
168 Eq a =>
169 sem (a -> a -> Bool)
170
171 infix 4 `equal`, ==
172 (==) ::
173 Abstractable sem =>
174 Unabstractable sem =>
175 Equalable sem =>
176 Eq a =>
177 sem a ->
178 sem a ->
179 sem Bool
180 (==) x y = equal .@ x .@ y
181
182 -- * Class 'IfThenElseable'
183 class IfThenElseable sem where
184 ifThenElse :: sem Bool -> sem a -> sem a -> sem a
185 ifThenElse = liftDerived3 ifThenElse
186 default ifThenElse ::
187 FromDerived3 IfThenElseable sem =>
188 sem Bool ->
189 sem a ->
190 sem a ->
191 sem a
192
193 -- * Class 'Inferable'
194 class Inferable a sem where
195 infer :: sem a
196 default infer :: FromDerived (Inferable a) sem => sem a
197 infer = liftDerived infer
198
199 unit :: Inferable () sem => sem ()
200 unit = infer
201 bool :: Inferable Bool sem => sem Bool
202 bool = infer
203 char :: Inferable Char sem => sem Char
204 char = infer
205 int :: Inferable Int sem => sem Int
206 int = infer
207 natural :: Inferable Natural sem => sem Natural
208 natural = infer
209 string :: Inferable String sem => sem String
210 string = infer
211
212 -- * Class 'Listable'
213 class Listable sem where
214 cons :: sem (a -> [a] -> [a])
215 nil :: sem [a]
216 cons = liftDerived cons
217 nil = liftDerived nil
218 default cons ::
219 FromDerived Listable sem =>
220 sem (a -> [a] -> [a])
221 default nil ::
222 FromDerived Listable sem =>
223 sem [a]
224
225 -- * Class 'Maybeable'
226 class Maybeable sem where
227 nothing :: sem (Maybe a)
228 just :: sem (a -> Maybe a)
229 nothing = liftDerived nothing
230 just = liftDerived just
231 default nothing ::
232 FromDerived Maybeable sem =>
233 sem (Maybe a)
234 default just ::
235 FromDerived Maybeable sem =>
236 sem (a -> Maybe a)
237
238 -- * Class 'IsoFunctor'
239 class IsoFunctor sem where
240 (<%>) :: Iso a b -> sem a -> sem b
241 infixl 4 <%>
242 (<%>) iso = liftDerived1 (iso <%>)
243 default (<%>) ::
244 FromDerived1 IsoFunctor sem =>
245 Iso a b ->
246 sem a ->
247 sem b
248
249 -- ** Type 'Iso'
250 data Iso a b = Iso {a2b :: a -> b, b2a :: b -> a}
251 instance Cat.Category Iso where
252 id = Iso Cat.id Cat.id
253 f . g = Iso (a2b f Cat.. a2b g) (b2a g Cat.. b2a f)
254
255 -- * Class 'ProductFunctor'
256
257 -- | Beware that this is an @infixr@,
258 -- not @infixl@ like 'Control.Applicative.<*>';
259 -- this is to follow what is expected by 'ADT'.
260 class ProductFunctor sem where
261 (<.>) :: sem a -> sem b -> sem (a, b)
262 infixr 4 <.>
263 (<.>) = liftDerived2 (<.>)
264 default (<.>) ::
265 FromDerived2 ProductFunctor sem =>
266 sem a ->
267 sem b ->
268 sem (a, b)
269 (<.) :: sem a -> sem () -> sem a
270 infixr 4 <.
271 ra <. rb = Iso Tuple.fst (,()) <%> (ra <.> rb)
272 default (<.) :: IsoFunctor sem => sem a -> sem () -> sem a
273 (.>) :: sem () -> sem a -> sem a
274 infixr 4 .>
275 ra .> rb = Iso Tuple.snd ((),) <%> (ra <.> rb)
276 default (.>) :: IsoFunctor sem => sem () -> sem a -> sem a
277
278 -- * Class 'SumFunctor'
279
280 -- | Beware that this is an @infixr@,
281 -- not @infixl@ like 'Control.Applicative.<|>';
282 -- this is to follow what is expected by 'ADT'.
283 class SumFunctor sem where
284 (<+>) :: sem a -> sem b -> sem (Either a b)
285 infixr 3 <+>
286 (<+>) = liftDerived2 (<+>)
287 default (<+>) ::
288 FromDerived2 SumFunctor sem =>
289 sem a ->
290 sem b ->
291 sem (Either a b)
292
293 -- | Like @(,)@ but @infixr@.
294 -- Mostly useful for clarity when using 'SumFunctor'.
295 pattern (:!:) :: a -> b -> (a, b)
296 pattern a :!: b <-
297 (a, b)
298 where
299 a :!: b = (a, b)
300
301 infixr 4 :!:
302 {-# COMPLETE (:!:) #-}
303
304 -- * Class 'AlternativeFunctor'
305
306 -- | Beware that this is an @infixr@,
307 -- not @infixl@ like 'Control.Applicative.<|>';
308 -- this is to follow what is expected by 'ADT'.
309 class AlternativeFunctor sem where
310 (<|>) :: sem a -> sem a -> sem a
311 infixr 3 <|>
312 (<|>) = liftDerived2 (<|>)
313 default (<|>) ::
314 FromDerived2 AlternativeFunctor sem =>
315 sem a ->
316 sem a ->
317 sem a
318
319 -- * Class 'Dicurryable'
320 class Dicurryable sem where
321 dicurry ::
322 CurryN args =>
323 proxy args ->
324 (args -..-> a) -> -- construction
325 (a -> Tuples args) -> -- destruction
326 sem (Tuples args) ->
327 sem a
328 dicurry args constr destr = liftDerived1 (dicurry args constr destr)
329 default dicurry ::
330 FromDerived1 Dicurryable sem =>
331 CurryN args =>
332 proxy args ->
333 (args -..-> a) ->
334 (a -> Tuples args) ->
335 sem (Tuples args) ->
336 sem a
337
338 construct ::
339 forall args a sem.
340 Dicurryable sem =>
341 Generic a =>
342 EoTOfRep a =>
343 CurryN args =>
344 Tuples args ~ EoT (ADT a) =>
345 (args ~ Args (args -..-> a)) =>
346 (args -..-> a) ->
347 sem (Tuples args) ->
348 sem a
349 construct f = dicurry (Proxy :: Proxy args) f eotOfadt
350
351 -- * Class 'Dataable'
352
353 -- | Enable the contruction or deconstruction
354 -- of an 'ADT' (algebraic data type).
355 class Dataable a sem where
356 dataType :: sem (EoT (ADT a)) -> sem a
357 default dataType ::
358 Generic a =>
359 RepOfEoT a =>
360 EoTOfRep a =>
361 IsoFunctor sem =>
362 sem (EoT (ADT a)) ->
363 sem a
364 dataType = (<%>) (Iso adtOfeot eotOfadt)
365
366 -- * Class 'IfSemantic'
367
368 -- | 'IfSemantic' enables to change the 'Syntax' for a specific 'Semantic'.
369 --
370 -- Useful when a 'Semantic' does not implement some 'Syntax'es used by other 'Semantic's.
371 class
372 IfSemantic
373 (thenSyntaxes :: [Syntax])
374 (elseSyntaxes :: [Syntax])
375 thenSemantic
376 elseSemantic
377 where
378 ifSemantic ::
379 (Syntaxes thenSyntaxes thenSemantic => thenSemantic a) ->
380 (Syntaxes elseSyntaxes elseSemantic => elseSemantic a) ->
381 elseSemantic a
382
383 instance
384 {-# OVERLAPPING #-}
385 Syntaxes thenSyntaxes thenSemantic =>
386 IfSemantic thenSyntaxes elseSyntaxes thenSemantic thenSemantic
387 where
388 ifSemantic thenSyntax _elseSyntax = thenSyntax
389 instance
390 Syntaxes elseSyntaxes elseSemantic =>
391 IfSemantic thenSyntaxes elseSyntaxes thenSemantic elseSemantic
392 where
393 ifSemantic _thenSyntax elseSyntax = elseSyntax
394
395 -- * Class 'Monoidable'
396 class
397 ( Emptyable sem
398 , Semigroupable sem
399 ) =>
400 Monoidable sem
401 instance
402 ( Emptyable sem
403 , Semigroupable sem
404 ) =>
405 Monoidable sem
406
407 -- ** Class 'Emptyable'
408 class Emptyable sem where
409 empty :: sem a
410 empty = liftDerived empty
411 default empty ::
412 FromDerived Emptyable sem =>
413 sem a
414
415 -- ** Class 'Semigroupable'
416 class Semigroupable sem where
417 concat :: Semigroup a => sem (a -> a -> a)
418 concat = liftDerived concat
419 default concat ::
420 FromDerived Semigroupable sem =>
421 Semigroup a =>
422 sem (a -> a -> a)
423
424 infixr 6 `concat`, <>
425 (<>) ::
426 Abstractable sem =>
427 Unabstractable sem =>
428 Semigroupable sem =>
429 Semigroup a =>
430 sem a ->
431 sem a ->
432 sem a
433 (<>) x y = concat .@ x .@ y
434
435 -- ** Class 'Optionable'
436 class Optionable sem where
437 optional :: sem a -> sem (Maybe a)
438 optional = liftDerived1 optional
439 default optional ::
440 FromDerived1 Optionable sem =>
441 sem a ->
442 sem (Maybe a)
443
444 -- * Class 'Repeatable'
445 class Repeatable sem where
446 many0 :: sem a -> sem [a]
447 many1 :: sem a -> sem [a]
448 many0 = liftDerived1 many0
449 many1 = liftDerived1 many1
450 default many0 ::
451 FromDerived1 Repeatable sem =>
452 sem a ->
453 sem [a]
454 default many1 ::
455 FromDerived1 Repeatable sem =>
456 sem a ->
457 sem [a]
458
459 -- | Alias to 'many0'.
460 many :: Repeatable sem => sem a -> sem [a]
461 many = many0
462
463 -- | Alias to 'many1'.
464 some :: Repeatable sem => sem a -> sem [a]
465 some = many1
466
467 -- * Class 'Permutable'
468 class Permutable sem where
469 -- Use @TypeFamilyDependencies@ to help type-inference infer @(sem)@.
470 type Permutation (sem :: Semantic) = (r :: Semantic) | r -> sem
471 type Permutation sem = Permutation (Derived sem)
472 permutable :: Permutation sem a -> sem a
473 perm :: sem a -> Permutation sem a
474 noPerm :: Permutation sem ()
475 permWithDefault :: a -> sem a -> Permutation sem a
476 optionalPerm ::
477 Eitherable sem =>
478 IsoFunctor sem =>
479 Permutable sem =>
480 sem a ->
481 Permutation sem (Maybe a)
482 optionalPerm = permWithDefault Nothing Fun.. (<%>) (Iso Just fromJust)
483
484 (<&>) ::
485 Permutable sem =>
486 ProductFunctor (Permutation sem) =>
487 sem a ->
488 Permutation sem b ->
489 Permutation sem (a, b)
490 x <&> y = perm x <.> y
491 infixr 4 <&>
492 {-# INLINE (<&>) #-}
493
494 (<?&>) ::
495 Eitherable sem =>
496 IsoFunctor sem =>
497 Permutable sem =>
498 ProductFunctor (Permutation sem) =>
499 sem a ->
500 Permutation sem b ->
501 Permutation sem (Maybe a, b)
502 x <?&> y = optionalPerm x <.> y
503 infixr 4 <?&>
504 {-# INLINE (<?&>) #-}
505
506 (<*&>) ::
507 Eitherable sem =>
508 Repeatable sem =>
509 IsoFunctor sem =>
510 Permutable sem =>
511 ProductFunctor (Permutation sem) =>
512 sem a ->
513 Permutation sem b ->
514 Permutation sem ([a], b)
515 x <*&> y = permWithDefault [] (many1 x) <.> y
516 infixr 4 <*&>
517 {-# INLINE (<*&>) #-}
518
519 (<+&>) ::
520 Eitherable sem =>
521 Repeatable sem =>
522 IsoFunctor sem =>
523 Permutable sem =>
524 ProductFunctor (Permutation sem) =>
525 sem a ->
526 Permutation sem b ->
527 Permutation sem ([a], b)
528 x <+&> y = perm (many1 x) <.> y
529 infixr 4 <+&>
530 {-# INLINE (<+&>) #-}
531
532 -- * Class 'Voidable'
533 class Voidable sem where
534 -- | Useful to supply @(a)@ to a @(sem)@ consuming @(a)@,
535 -- for example in the format of a printing interpreter.
536 void :: a -> sem a -> sem ()
537 void = liftDerived1 Fun.. void
538 default void ::
539 FromDerived1 Voidable sem =>
540 a ->
541 sem a ->
542 sem ()
543
544 -- * Class 'Substractable'
545 class Substractable sem where
546 (<->) :: sem a -> sem b -> sem a
547 infixr 3 <->
548 (<->) = liftDerived2 (<->)
549 default (<->) ::
550 FromDerived2 Substractable sem =>
551 sem a ->
552 sem b ->
553 sem a