2 {-# LANGUAGE TemplateHaskell #-}
3 {-# OPTIONS_GHC -Wno-incomplete-patterns #-}
5 -- | This module enables the lifting to any interpreter of any Haskell functions,
6 -- taking as arguments only polymorphic types (possibly constrained)
7 -- or functions using such types.
9 -- This reification of an Haskell value using type-directed normalisation-by-evaluation (NBE),
10 -- is inspired by Oleg Kiselyov's [TDPE.hs](http://okmij.org/ftp/tagless-final/course/TDPE.hs).
11 module Symantic.Syntaxes.Reify where
13 import Control.Monad (Monad (..))
14 import Data.Function qualified as Fun
15 import Language.Haskell.TH qualified as TH
17 import Symantic.Syntaxes.Classes (Abstractable (..), Instantiable (..))
19 -- | 'ReifyReflect' witnesses the duality between @meta@ and @(repr a)@.
20 -- It indicates which type variables in @a@ are not to be instantiated
21 -- with the arrow type, and instantiates them to @(repr _)@ in @meta@.
22 -- This is directly taken from: http://okmij.org/ftp/tagless-final/course/TDPE.hs
24 -- * @meta@ instantiates polymorphic types of the original Haskell expression
25 -- with @(repr _)@ types, according to how 'ReifyReflect' is constructed
26 -- using 'base' and @('-->')@. This is obviously not possible
27 -- if the orignal expression uses monomorphic types (like 'Int'),
28 -- but remains possible with constrained polymorphic types (like @(Num i => i)@),
29 -- because @(i)@ can still be inferred to @(repr _)@,
30 -- whereas the finally chosen @(repr)@
31 -- (eg. 'E', or 'Identity', or 'TH.CodeQ', or ...)
32 -- can have a 'Num' instance.
33 -- * @(repr a)@ is the symantic type as it would have been,
34 -- had the expression been written with explicit 'lam's
35 -- instead of bare haskell functions.
36 -- DOC: http://okmij.org/ftp/tagless-final/cookbook.html#TDPE
37 -- DOC: http://okmij.org/ftp/tagless-final/NBE.html
38 -- DOC: https://www.dicosmo.org/Articles/2004-BalatDiCosmoFiore-Popl.pdf
39 data ReifyReflect repr meta a = ReifyReflect
40 { reify :: meta -> repr a
41 -- ^ 'reflect' converts from a *represented* Haskell term of type @a@
42 -- to an object *representing* that value of type @a@.
43 , reflect :: repr a -> meta
44 -- ^ 'reflect' converts back an object *representing* a value of type @a@,
45 -- to the *represented* Haskell term of type @a@.
48 -- | The base of induction : placeholder for a type which is not the arrow type.
49 base :: ReifyReflect repr (repr a) a
50 base = ReifyReflect{reify = Fun.id, reflect = Fun.id}
52 -- | The inductive case : the arrow type.
58 ReifyReflect repr m1 o1 ->
59 ReifyReflect repr m2 o2 ->
60 ReifyReflect repr (m1 -> m2) (o1 -> o2)
63 { reify = \meta -> lam (reify r2 Fun.. meta Fun.. reflect r1)
64 , reflect = \repr -> reflect r2 Fun.. (.@) repr Fun.. reify r1
67 -- * Using TemplateHaskell to fully auto-generate 'ReifyReflect'
69 -- | @$(reifyTH 'Foo.bar)@ calls 'reify' on 'Foo.bar'
70 -- with an 'ReifyReflect' generated from the infered type of 'Foo.bar'.
71 reifyTH :: TH.Name -> TH.Q TH.Exp
75 TH.VarI n (TH.ForallT _vs _ctx ty) _dec ->
76 [|reify $(genReifyReflect ty) $(return (TH.VarE n))|]
78 genReifyReflect (TH.AppT (TH.AppT TH.ArrowT a) b) = [|$(genReifyReflect a) --> $(genReifyReflect b)|]
79 genReifyReflect TH.VarT{} = [|base|]