]> Git — Sourcephile - haskell/symantic-base.git/blob - src/Symantic/Syntaxes/EithersOfTuples.hs
iface: add semantic `Forall`
[haskell/symantic-base.git] / src / Symantic / Syntaxes / EithersOfTuples.hs
1 {-# LANGUAGE AllowAmbiguousTypes #-}
2 {-# LANGUAGE ConstraintKinds #-}
3 {-# LANGUAGE DataKinds #-}
4 {-# LANGUAGE EmptyCase #-}
5 {-# LANGUAGE PolyKinds #-}
6 {-# LANGUAGE UndecidableInstances #-}
7
8 -- | EOT (Either of Tuples) to/from ADT (Algebraic Data Type).
9 -- to produce or consume custom ADT with @('<.>')@ and @('<+>')@.
10 --
11 -- This is like what is done in @generic-sop@:
12 -- https://hackage.haskell.org/package/generics-sop-0.5.1.0/docs/src/Generics.SOP.GGP.html#gSumFrom
13 -- but using directly 'Either' and 'Tuples'
14 -- instead of passing by the intermediary GADTs @NP@ and @NS@.
15 module Symantic.Syntaxes.EithersOfTuples where
16
17 import Data.Either (Either (..))
18 import Data.Function (const, id, ($), (.))
19 import Data.Kind (Type)
20 import Data.Void (Void, absurd)
21 import GHC.Generics as Generics
22
23 -- * Type family 'EoT'
24
25 -- Return an 'Either' of 'Tuples' from the given 'ADT',
26 -- matching the nesting occuring when using @('<.>')@ and ('<+>')@
27 -- and their associativity and precedence,
28 -- with no parenthesis messing around.
29 type family EoT (adt :: [[Type]]) :: Type where
30 -- This is 'absurd'
31 EoT '[] = Void
32 -- There Is No Alternative
33 EoT '[ps] = Tuples ps
34 -- The right associativity of @('<+>')@
35 -- puts leaves on 'Left' and nodes on 'Right'
36 EoT (ps ': ss) = Either (Tuples ps) (EoT ss)
37
38 -- * Type family 'Tuples'
39
40 -- | Return the type of 'snd'-nested 2-tuples
41 -- from the given list of types.
42 type family Tuples (as :: [Type]) :: (r :: Type) where
43 Tuples '[] = ()
44 Tuples '[a] = a
45 Tuples (a ': rest) = (a, Tuples rest)
46
47 -- * Type 'ADT'
48
49 -- | Normalized type-level representation of an Algebraic Data Type.
50 type ADT (adt :: Type) = ListOfRepSums (Rep adt) '[]
51
52 -- ** Type family 'ListOfRepSums'
53
54 -- | Collect the alternatives in a continuation passing-style.
55 type family ListOfRepSums (a :: Type -> Type) (ss :: [[Type]]) :: [[Type]]
56
57 type instance ListOfRepSums (a :+: b) ss = ListOfRepSums a (ListOfRepSums b ss)
58
59 -- | Meta-information for datatypes
60 type instance ListOfRepSums (M1 D _c a) ss = ListOfRepSums a ss
61
62 -- | Meta-information for constructors
63 type instance ListOfRepSums (M1 C _c a) ss = ListOfRepProducts a '[] ': ss
64
65 -- | Empty datatypes
66 type instance ListOfRepSums V1 ss = ss
67
68 -- ** Type family 'ListOfRepProducts'
69
70 -- | Collect the records in a continuation passing-style.
71 type family ListOfRepProducts (a :: Type -> Type) (ps :: [Type]) :: [Type]
72
73 type instance ListOfRepProducts (a :*: b) ps = ListOfRepProducts a (ListOfRepProducts b ps)
74
75 -- | Meta-information for record selectors
76 type instance ListOfRepProducts (M1 S _c a) ps = TypeOfRepField a ': ps
77
78 -- | Constructor without fields
79 type instance ListOfRepProducts U1 ps = ps
80
81 -- ** Type family 'TypeOfRepField'
82 type family TypeOfRepField (a :: Type -> Type) :: Type
83 type instance TypeOfRepField (K1 _i a) = a
84
85 -- * Class 'RepOfEoT'
86 type RepOfEoT a = RepOfEithers (Rep a) '[]
87
88 -- | Morph the 'Either' of 'Tuples' corresponding to an 'ADT'
89 -- into a constructor of this 'ADT'.
90 -- This is the reverse of 'eotOfadt'.
91 adtOfeot :: Generic a => RepOfEoT a => EoT (ADT a) -> a
92 adtOfeot eot = Generics.to $ repOfEithers @_ @'[] eot id absurd
93
94 -- ** Class 'RepOfEithers'
95 class RepOfEithers (a :: Type -> Type) ss where
96 -- | Parse the 'Either' (list-like) binary tree of 'EoT'
97 -- into the @(':+:')@ (balanced) binary tree of 'Rep',
98 -- using continuation passing-style for performance.
99 repOfEithers ::
100 EoT (ListOfRepSums a ss) ->
101 -- the 'a' 'Rep' is the current alternative in the 'EoT'
102 (a x -> r) ->
103 -- the 'a' 'Rep' is a following alternative in the 'EoT'
104 (EoT ss -> r) ->
105 r
106 instance (RepOfEithers a (ListOfRepSums b ss), RepOfEithers b ss) => RepOfEithers (a :+: b) ss where
107 repOfEithers eot ok ko =
108 -- try to parse 'a' on the current 'eot'
109 repOfEithers @a @(ListOfRepSums b ss)
110 eot
111 (ok . L1)
112 ( \next ->
113 -- parsing 'a' failed
114 -- try to parse 'b' on the 'Right' of the current 'eot'
115 repOfEithers @b @ss
116 next
117 (ok . R1)
118 ko -- parsing 'b' failed: backtrack
119 )
120 instance RepOfEithers a ss => RepOfEithers (M1 D c a) ss where
121 repOfEithers eot ok = repOfEithers @a @ss eot (ok . M1)
122 instance RepOfTuples a '[] => RepOfEithers (M1 C c a) (ps ': ss) where
123 repOfEithers eot ok ko =
124 case eot of
125 -- 'EoT' is a leaf, and 'Rep' too: parsing succeeds
126 Left ts -> ok $ M1 $ repOfTuples @a @'[] ts const
127 -- 'EoT' is a node, but 'Rep' is a leaf: parsing fails
128 Right ss -> ko ss
129 instance RepOfTuples a '[] => RepOfEithers (M1 C c a) '[] where
130 repOfEithers eot ok _ko = ok $ M1 $ repOfTuples @_ @'[] eot const
131 instance RepOfEithers V1 ss where
132 repOfEithers eot _ok ko = ko eot
133
134 -- ** Class 'RepOfTuples'
135 class RepOfTuples (a :: Type -> Type) (xs :: [Type]) where
136 -- | Parse the 'Tuples' (list-like) binary tree of 'EoT'
137 -- into the @(':*:')@ (balanced) binary tree of 'Rep',
138 -- using continuation passing-style for performance.
139 repOfTuples ::
140 Tuples (ListOfRepProducts a xs) ->
141 (a x -> Tuples xs -> r) ->
142 r
143 instance (RepOfTuples a (ListOfRepProducts b ps), RepOfTuples b ps) => RepOfTuples (a :*: b) ps where
144 repOfTuples ts k =
145 -- uncons 'a'
146 repOfTuples @a @(ListOfRepProducts b ps)
147 ts
148 ( \a ts' ->
149 -- uncons 'b'
150 repOfTuples @b @ps
151 ts'
152 (\b -> k (a :*: b))
153 )
154 instance RepOfField a => RepOfTuples (M1 S c a) (p ': ps) where
155 repOfTuples (a, ts) k = k (M1 (repOfField a)) ts
156 instance RepOfField a => RepOfTuples (M1 S c a) '[] where
157 repOfTuples a k = k (M1 (repOfField a)) ()
158 instance RepOfTuples U1 ps where
159 repOfTuples ts k = k U1 ts
160
161 -- ** Class 'RepOfField'
162 class RepOfField (a :: Type -> Type) where
163 repOfField :: TypeOfRepField a -> a x
164 instance RepOfField (K1 i a) where
165 repOfField = K1
166
167 -- * Class 'EoTOfRep'
168 type EoTOfRep a = EithersOfRep (Rep a) '[]
169
170 -- | Morph the constructor of an 'ADT'
171 -- into the corresponding 'Either' of 'Tuples' of this 'ADT'.
172 -- This is the reverse of 'adtOfeot'.
173 eotOfadt :: Generic a => EoTOfRep a => a -> EoT (ADT a)
174 eotOfadt = eithersOfRepL @_ @'[] . Generics.from
175
176 -- ** Class 'EithersOfRep'
177 class EithersOfRep (a :: Type -> Type) ss where
178 eithersOfRepL :: a x -> EoT (ListOfRepSums a ss)
179 eithersOfRepR :: EoT ss -> EoT (ListOfRepSums a ss)
180 instance
181 (EithersOfRep a (ListOfRepSums b ss), EithersOfRep b ss) =>
182 EithersOfRep (a :+: b) ss
183 where
184 eithersOfRepL = \case
185 L1 a -> eithersOfRepL @a @(ListOfRepSums b ss) a
186 R1 b -> eithersOfRepR @a @(ListOfRepSums b ss) (eithersOfRepL @b @ss b)
187 eithersOfRepR ss = eithersOfRepR @a @(ListOfRepSums b ss) (eithersOfRepR @b @ss ss)
188 instance EithersOfRep a ss => EithersOfRep (M1 D c a) ss where
189 eithersOfRepL (M1 a) = eithersOfRepL @a @ss a
190 eithersOfRepR = eithersOfRepR @a @ss
191 instance TuplesOfRep a '[] => EithersOfRep (M1 C c a) '[] where
192 eithersOfRepL (M1 a) = tuplesOfRep @_ @'[] a ()
193 eithersOfRepR = absurd
194 instance TuplesOfRep a '[] => EithersOfRep (M1 C c a) (ps ': ss) where
195 eithersOfRepL (M1 a) = Left $ tuplesOfRep @_ @'[] a ()
196 eithersOfRepR = Right
197 instance EithersOfRep V1 ss where
198 eithersOfRepL = \case {}
199 eithersOfRepR = id
200
201 -- ** Class 'TuplesOfRep'
202 class TuplesOfRep (a :: Type -> Type) (ps :: [Type]) where
203 tuplesOfRep :: a x -> Tuples ps -> Tuples (ListOfRepProducts a ps)
204 instance (TuplesOfRep a (ListOfRepProducts b ps), TuplesOfRep b ps) => TuplesOfRep (a :*: b) ps where
205 tuplesOfRep (a :*: b) ps =
206 tuplesOfRep @a @(ListOfRepProducts b ps)
207 a
208 (tuplesOfRep @b @ps b ps)
209 instance TuplesOfRep U1 ps where
210 tuplesOfRep U1 xs = xs
211 instance FieldOfRep a => TuplesOfRep (M1 S c a) (x ': ps) where
212 tuplesOfRep (M1 a) xs = (fieldOfRep a, xs)
213 instance FieldOfRep a => TuplesOfRep (M1 S c a) '[] where
214 tuplesOfRep (M1 a) _xs = fieldOfRep a
215
216 -- ** Class 'FieldOfRep'
217 class FieldOfRep (a :: Type -> Type) where
218 fieldOfRep :: a x -> TypeOfRepField a
219 instance FieldOfRep (K1 i a) where
220 fieldOfRep (K1 a) = a